(2012•宿州三模)已知
i
j
為互相垂直的單位向量,
a
=
i
+2
j
b
=-
i
i
,且
a
b
夾角為鈍角,則λ的取值范圍是( 。
分析:
a
b
夾角為鈍角,可得
a
b
<0
b
a
不共線,再代入向量解不等式即可得到答案.
解答:解:由題意可得:
a
b
夾角為鈍角,
a
b
=(
i
+2
j
•(-
i
j
)
=-1+2λ<0,且
b
,
a
不共線
λ<
1
2
并且λ≠2
a
b
時,可得λ=-2
所以實數(shù)λ的取值范圍是 (-∞,-2)∪(-2,
1
2
).
故選C
點評:本題主要考查利用向量的數(shù)量積表示解決兩個向量的夾角問題,當 與 的夾角為鈍角可得,
a
b
<0
b
,
a
不共線,但是學生容易忽略兩個向量共線并且反向的情況
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•宿州三模)函數(shù)f(x)=log 2x-
1
x
的一個零點落在下列哪個區(qū)間( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•宿州三模)已知數(shù)列{an}的前n項和Sn滿足:Sn=t(Sn-an+1)(t>0),且4a3是a1與2a2的等差中項.
(Ⅰ)求t的值及數(shù)列{an}的通項公式;
(Ⅱ)設bn=
2n+1an
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•宿州三模)某市醫(yī)療保險實行定點醫(yī)療制度,按照“就近就醫(yī)、方便管理”的原則,參加保險人員可自主選擇四家醫(yī)療保險定點醫(yī)院和一家社區(qū)醫(yī)院作為本人就診的醫(yī)療機構.若甲、乙、丙、丁4名參加保險人員所在地區(qū)附近有A,B,C三家社區(qū)醫(yī)院,并且他們的選擇是相互獨立的.
(Ⅰ)求甲、乙兩人都選擇A社區(qū)醫(yī)院的概率;
(Ⅱ)求甲、乙兩人不選擇同一家社區(qū)醫(yī)院的概率;
(Ⅲ)設4名參加保險人員中選擇A社區(qū)醫(yī)院的人數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•宿州三模)已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)如果函數(shù)g(x)在x=1處取得極值,求a的值;
(Ⅱ)在(Ⅰ)的條件下,求函數(shù)y=g(x)的圖象在點P(-1,g(-1))處的切線方程;
(Ⅲ)若不等式2f(x)≤g′(x)+2對于任意x>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•宿州三模)程序框圖如圖所示,該程序運行后輸出的S的值是(  )

查看答案和解析>>

同步練習冊答案