【題目】已知三棱錐中,,,,.有以下結論:①三棱錐的表面積為;②三棱錐的內切球的半徑;③點到平面的距離為;其中正確的是( )
A.①②B.②③C.①③D.①②③
【答案】D
【解析】
①取的中點,連接、,分別求出四個面的面積,即可求得表面積;
②采用分割法,將三棱錐分割成以四個面為底面,內切球的球心為頂點,半徑為高的四個三棱錐,根據(jù)等積法,即可求得內切球的半徑;
③利用面面垂直的判定定理可證平面平面,于是點到平面的距離即為點到的距離,再利用三角形的等面積法即可得解.
如圖所示:
取的中點,連接、,則,,
,,,,
由題意可計算得出,,以及各線段長度如圖,
∴三棱錐的表面積為,即①正確;
∵由題可得,平面,∴由等體積法可得,,
∴,即②正確;
,,、平面,平面,
又平面,平面平面,
點到平面的距離即為點到的距離,
由三角形等面積法可知,在中,點到的距離為,即③正確.
故選:.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:上一點到其焦點的距離為2.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)設拋物線的準線與軸交于點,直線過點且與拋物線交于,兩點(點在點,之間),點滿足,求與的面積之和取得最小值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地開發(fā)一片荒地,如圖,荒地的邊界是以C為圓心,半徑為1千米的圓周.已有兩條互相垂直的道路OE,OF,分別與荒地的邊界有且僅有一個接觸點A,B.現(xiàn)規(guī)劃修建一條新路(由線段MP,,線段QN三段組成),其中點M,N分別在OE,OF上,且使得MP,QN所在直線分別與荒地的邊界有且僅有一個接觸點P,Q,所對的圓心角為.記∠PCA=(道路寬度均忽略不計).
(1)若,求QN的長度;
(2)求新路總長度的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知箱中裝有10個不同的小球,其中2個紅球、3個黑球和5個白球,現(xiàn)從該箱中有放回地依次取出3個小球.則3個小球顏色互不相同的概率是_____;若變量ξ為取出3個球中紅球的個數(shù),則ξ的數(shù)學期望E(ξ)為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,如圖四棱錐中,底面為菱形,,,平面,E,M分別是BC,PD中點,點F在棱PC上移動.
(1)證明無論點F在PC上如何移動,都有平面平面;
(2)當直線AF與平面PCD所成的角最大時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,過點的直線交拋物線于兩點.
(1)若直線平行于軸,,求拋物線的方程;
(2)對于(1)條件下的拋物線,當直線的斜率變化時,證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(t為參數(shù),).在以坐標原點為極點、x軸的非負半軸為極軸的極坐標系中,曲線C的極坐標方程為.
(1)若點在直線l上,求線l的直角坐標方程和曲線C的直角坐標方程;
(2)已知,點P在直線l上,點Q在曲線C上,且的最小值為,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點S( -2,0) ,T(2,0),動點P為平面上一個動點,且直線SP、TP的斜率之積為.
(1)求動點P的軌跡E的方程;
(2)設點B為軌跡E與y軸正半軸的交點,是否存在直線l,使得l交軌跡E于M,N兩點,且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】紅鈴蟲(Pectinophora gossypiella)是棉花的主要害蟲之一,其產(chǎn)卵數(shù)與溫度有關.現(xiàn)收集到一只紅鈴蟲的產(chǎn)卵數(shù)y(個)和溫度x(℃)的8組觀測數(shù)據(jù),制成圖1所示的散點圖.現(xiàn)用兩種模型①,②分別進行擬合,由此得到相應的回歸方程并進行殘差分析,進一步得到圖2所示的殘差圖.
根據(jù)收集到的數(shù)據(jù),計算得到如下值:
25 | 2.89 | 646 | 168 | 422688 | 48.48 | 70308 |
表中;;;;
(1)根據(jù)殘差圖,比較模型①、②的擬合效果,應選擇哪個模型?并說明理由;
(2)根據(jù)(1)中所選擇的模型,求出y關于x的回歸方程(系數(shù)精確到0.01),并求溫度為34℃時,產(chǎn)卵數(shù)y的預報值.
(參考數(shù)據(jù):,,,)
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com