在實數(shù)集R上定義運算○×:x○×y=(x+a)(1-y),若f(x)=x2,g(x)=x.若F(x)=f(x)○×g(x)在R上為減函數(shù),則a的取值范圍是
a≥
1
3
a≥
1
3
分析:根據(jù)定義的運算表示出F(x),由F(x)為R上的減函數(shù)知F′(x)≤0恒成立,由此即可求得a的范圍.
解答:解:由已知,得F(x)=(x2+a)(1-x)=-x3+x2-ax+a,
∵F(x)在R上是減函數(shù),∴F′(x)=-3x2+2x-a≤0恒成立,
∴△=4-12a≤0,解得a≥
1
3

故答案為:a≥
1
3
點評:本題考查函數(shù)單調(diào)性的性質(zhì),考查恒成立問題及學(xué)生運用所學(xué)知識解決新問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)集R上定義運算⊕:a⊕b=a+b+4,并定義:若R存在元素e使得對?a∈R,有e⊕a=a,則e稱為R上的零元,那么,實數(shù)集上的零元e之值是
-4
-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)集R上定義運算?:x?y=(x+a)(1-y),若f(x)=x2,g(x)=x,若F(x)=f(x)?g(x).
(1)求F(x)的解析式;
(2)若F(x)在R上是減函數(shù),求實數(shù)a的取值范圍;
(3)若a=
53
,F(xiàn)(x)的曲線上是否存在兩點,使得過這兩點的切線互相垂直,若存在,求出切線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)集R上定義運算?:x?y=x(1-y),若x?(x+a)<1,對任意實數(shù)x均成立,則實數(shù)a的取值范圍
(-1,3)
(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•嘉定區(qū)二模)在實數(shù)集R上定義運算⊕:x⊕y=2x2+y2+1-y,則滿足x⊕y=y⊕x的實數(shù)對(x,y)在平面直角坐標(biāo)系內(nèi)對應(yīng)點的軌跡是(  )

查看答案和解析>>

同步練習(xí)冊答案