【題目】已知,函數(shù).

(1)若有極小值且極小值為0,求的值;

(2)當(dāng)時(shí),,求的取值范圍.

【答案】(1)見(jiàn)解析;(2)

【解析】

(1)討論a的范圍,判斷f(x)的單調(diào)性,得出f(x)的極小值,從而列方程解出a的值;

(2)等價(jià)于,即,討論a的范圍,轉(zhuǎn)化為新函數(shù)的最值問(wèn)題即可.

(1)

①若,則由解得,

當(dāng)時(shí),遞減;當(dāng)時(shí),遞增;

故當(dāng)時(shí),取極小值,令,得(舍去)

,則由,解得

(i)若,即時(shí),當(dāng),遞增;

當(dāng),,遞增故當(dāng)當(dāng)時(shí),取極小值,

,得(舍去)

(ii)若,即時(shí),,遞增不存在極值;

(iii)若,即時(shí),當(dāng)時(shí),,遞增;當(dāng)時(shí),,遞減;當(dāng)時(shí),遞增;

故當(dāng)時(shí),取極小值,得滿足條件

故當(dāng)有極小值且極小值為0時(shí),.

(2)等價(jià)于,即(*)

當(dāng)時(shí),①式恒成立;當(dāng)時(shí),,故當(dāng)時(shí),①式恒成立;

以下求當(dāng)時(shí),不等式恒成立,且當(dāng)時(shí)不等式恒成立時(shí)正數(shù)的取值范圍

,以下求當(dāng),恒成立,且當(dāng),恒成立時(shí)正數(shù)的取值范圍

對(duì)求導(dǎo),得,記

(i)當(dāng)時(shí),,

上遞增,又,故,,

即當(dāng)時(shí),(*)式恒成立;

(ii)當(dāng)時(shí),,故的兩個(gè)零點(diǎn)即的兩個(gè)零點(diǎn),在區(qū)間上,,是減函數(shù),

,所以,當(dāng)時(shí)①式不能恒成立.

綜上所述,所求的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)

如圖,四邊形ABCD為梯形,AB//CD,平面ABCD,

BC的中點(diǎn).

(1)求證:平面平面PDE.

(2)在線段PC上是否存在一點(diǎn)F,使得PA//平面BDF?若存在,指出點(diǎn)F的位置,并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點(diǎn)。

1)證明: 平面;

2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)寫(xiě)出函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍;

3)若對(duì)所有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游風(fēng)景區(qū)發(fā)行的紀(jì)念章即將投放市場(chǎng),根據(jù)市場(chǎng)調(diào)研情況,預(yù)計(jì)每枚該紀(jì)念章的市場(chǎng)價(jià)y(單位:元)與上市時(shí)間x(單位:天)的數(shù)據(jù)如下:

上市時(shí)間x

2

6

20

市場(chǎng)價(jià)y

102

78

120

1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場(chǎng)價(jià)y與上市時(shí)間x的變化關(guān)系并說(shuō)明理由:①;②;③

2)利用你選取的函數(shù),求該紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格;

3)利用你選取的函數(shù),若存在,使得不等式成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,水平的廣場(chǎng)上有一盞路燈掛在高的電線桿頂上,記電線桿的底部為點(diǎn).把路燈看作一個(gè)點(diǎn)光源,身高的女孩站在離點(diǎn)的點(diǎn)處,回答下面的問(wèn)題.

1)若女孩以為半徑繞著電線桿走一個(gè)圓圈,人影掃過(guò)的是什么圖形,求這個(gè)圖形的面積;

2)若女孩向點(diǎn)前行到達(dá)點(diǎn),然后從點(diǎn)出發(fā)沿著以為對(duì)角線的正方形走一圈,畫(huà)出女孩走一圈時(shí)頭頂影子的軌跡,說(shuō)明軌跡的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌手機(jī)廠商推出新款的旗艦機(jī)型,并在某地區(qū)跟蹤調(diào)查得到這款手機(jī)上市時(shí)間(個(gè)月)和市場(chǎng)占有率()的幾組相關(guān)對(duì)應(yīng)數(shù)據(jù):

1

2

3

4

5

0.02

0.05

0.1

0.15

0.18

(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)根據(jù)上述回歸方程,分析該款旗艦機(jī)型市場(chǎng)占有率的變化趨勢(shì),并預(yù)測(cè)自上市起經(jīng)過(guò)多少個(gè)月,該款旗艦機(jī)型市場(chǎng)占有率能超過(guò)(精確到月).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣(mài)相。某超市計(jì)劃每年六月從精準(zhǔn)扶貧戶中訂購(gòu)荔枝,每天進(jìn)貨量相同且每公斤20元,當(dāng)日18時(shí)前售價(jià)為每公斤24元,18時(shí)后以每公斤16元的價(jià)格銷(xiāo)售完畢。根據(jù)往年情況,每天的荔枝需求量與當(dāng)天平均氣溫有關(guān),如下表表示:

平均氣溫t(攝氏度)

需求量n(公斤)

50

100

200

300

為了確定今年6月1日6月30日的日購(gòu)數(shù)量,統(tǒng)計(jì)了前三年六月各天的平均氣溫,得到如下的頻數(shù)分布表:

平均氣溫

天數(shù)

2

16

36

25

7

4

(1)假設(shè)該超市在以往三年內(nèi)的六月每天進(jìn)貨100公斤,求荔枝為超市帶來(lái)的日平均利潤(rùn)(結(jié)果取整數(shù)).

(2)若今年該超市進(jìn)貨量為200公斤,以記錄的各需求量的頻率作為相應(yīng)的概率,求當(dāng)天超市不虧損的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案