【題目】已知函數(shù)是定義在R上的奇函數(shù),對都有成立,當(dāng)且時(shí),有.則下列說法正確的是( )
A.B.在上有5個(gè)零點(diǎn)
C.D.直線是函數(shù)圖象的一條對稱
【答案】ABC
【解析】
由可得是以2為周期的周期函數(shù),當(dāng)且時(shí),有,得函數(shù)在上單調(diào)遞減,根據(jù)函數(shù)性質(zhì)對每一個(gè)選項(xiàng)進(jìn)行分析,得出答案.
對都有成立,則是以2為周期的周期函數(shù).
當(dāng)且時(shí),有,則在上單調(diào)遞減.
由函數(shù)是定義在R上的奇函數(shù)有………①,
又是以2為周期的周期函數(shù),有…………②,
所以①②可得,所以A正確.
由,則,
為奇函數(shù),則,又是以2為周期的周期函數(shù),則.
又在上單調(diào)遞減且,則時(shí).
由為奇函數(shù),所以則時(shí).
根據(jù)是以2為周期的周期函數(shù) ,則時(shí),時(shí)
所以在上有,有5個(gè)零點(diǎn),故B正確
由是以2為周期的周期函數(shù)有,故C正確.
由上可知,當(dāng)時(shí),時(shí),則其圖象不可能關(guān)于對稱,故D不正確.
故選:ABC
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且)的零點(diǎn)是.
(1)設(shè)曲線在零點(diǎn)處的切線斜率分別為,判斷的單調(diào)性;
(2)設(shè)是的極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).(是自然對數(shù)的底數(shù))
(1)求的單調(diào)遞減區(qū)間;
(2)若函數(shù),證明在上只有兩個(gè)零點(diǎn).(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷活動(dòng),消費(fèi)每超過600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸出2個(gè)紅球則打6折,若摸出1個(gè)紅球,則打7折;若沒摸出紅球,則不打折.
方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù),函數(shù)
(1)當(dāng)函數(shù)在時(shí)為減函數(shù),求a的范圍;
(2)若a=e(e為自然對數(shù)的底數(shù));
①求函數(shù)g(x)的單調(diào)區(qū)間;
②證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個(gè)以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個(gè)凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點(diǎn).已知長為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))
(1)記四邊形的周長為,求的表達(dá)式;
(2)要使改建成的展示區(qū)的面積最大,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求直線的普通方程與圓的直角坐標(biāo)方程;
(2)設(shè)動(dòng)點(diǎn)在圓上,動(dòng)線段的中點(diǎn)的軌跡為,與直線交點(diǎn)為,且直角坐標(biāo)系中,點(diǎn)的橫坐標(biāo)大于點(diǎn)的橫坐標(biāo),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ex﹣2,x>0.
(1)求函數(shù)y=f(x)的圖象在點(diǎn)x=2處的切線方程;
(2)求證:f(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求函數(shù)的極大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com