設(shè)是兩條不同的直線,是兩個不同的平面,
有下列四個命題:
①若  ;
,則;
③若
④若
其中正確的命題是      .(寫出所有真命題的序號).
②④ 
解:命題1中,兩直線的位置關(guān)系可能是異面,
命題3中,可能線面相交,錯誤,只有2,4成立。符合面面垂直的判定和面面平行的判定
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題共10分)
將兩塊三角板按圖甲方式拼好,其中,,

,現(xiàn)將三角板沿折起,使在平面上的射影恰好在上,如圖乙.

(Ⅰ)求證:平面
(Ⅱ)求二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知斜三棱柱ABC—A1B1C1的底面是正三角形,側(cè)面ABB1A1是邊長為2的菱形,且,M是AB的中點,

(1)求證:平面ABC;
(2)求點M到平面AA1C1C的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四棱錐中,底面是正方形,其他四個側(cè)面都是等邊三角形,的交點為為側(cè)棱上一點.

(Ⅰ)當(dāng)E為側(cè)棱SC的中點時,求證:SA∥平面BDE;
(Ⅱ)求證:平面BDE⊥平面SAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在直三棱柱中,,,,,點是棱的中點.

(Ⅰ)證明:平面AA1C1C平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=1200,則AB與平面ADC所成角的正弦值為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體中,面對角線與體對角線所成角等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2.

(1)求異面直線PA與BC所成角的正切值;
(2)證明平面PDC⊥平面ABCD;
(3)求直線PB與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)表示不同的直線,表示不同的平面,給出下列四個命題:
①若,且;         
②若,且.則
③若,則∥m∥n;
④若且n∥,則∥m.
其中正確命題的個數(shù)是
A.1B.2 C.3D.4

查看答案和解析>>

同步練習(xí)冊答案