【題目】如圖,幾何體為邊長為2的正方形,為直角梯形,,,,,

(1)求證:;

(2)求二面角的大小

【答案】(1)證明見解析;(2)

【解析】

試題分析:(1)證明:由題意得平面,

平面,再由勾股定理得

平面;(2)為原點(diǎn),,,所在直線分別為,,軸建立如圖所示的空間直角坐標(biāo)系,平面的法向量平面的法向量為

試題解析: (1)證明:由題意得,,,

平面,,

四邊形為正方形,,

,

平面,

四邊形為直角梯形,,,,

,,則有

,平面

(2)由(1)知,所在的直線相互垂直故以為原點(diǎn),,所在直線分別為,軸建立如圖所示的空間直角坐標(biāo)系,

可得,,,,

由(1)知平面的法向量為

,,

設(shè)平面的法向量為,

則有

,,

設(shè)二面角的大小為,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐中,O為頂點(diǎn)S在底面ABCD內(nèi)的投影,P為側(cè)棱SD的中點(diǎn),且.

(1)證明:平面PAC.

(2)求直線BC與平面PAC的所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級(jí)開設(shè)了豐富多彩的校本課程,現(xiàn)從甲、乙兩個(gè)班隨機(jī)抽取了5名學(xué)生校本課程的學(xué)分,統(tǒng)計(jì)如下表.

8

11

14

15

22

6

7

10

23

24

分別表示甲、乙兩班抽取的5名學(xué)生學(xué)分的方差,計(jì)算兩個(gè)班學(xué)分的方差.得______,并由此可判斷成績更穩(wěn)定的班級(jí)是______班.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓,是長軸的一個(gè)端點(diǎn),弦過橢圓的中心,且

1)求橢圓的方程.

2)過橢圓右焦點(diǎn)的直線,交橢圓兩點(diǎn),交直線于點(diǎn),判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】6名男醫(yī)生和3名女醫(yī)生中選出5人組成一個(gè)醫(yī)療小組,請解答下列問題:

1)如果這個(gè)醫(yī)療小組中男女醫(yī)生都不能少于2人,共有多少種不同的建組方案?(用數(shù)字作答)

2)男醫(yī)生甲要擔(dān)任醫(yī)療小組組長,所以必選,而且醫(yī)療小組必須男女醫(yī)生都有,共有多少種不同的建組方案?

3)男醫(yī)生甲與女醫(yī)生乙不被同時(shí)選中的概率.(化成最簡分?jǐn)?shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),)為奇函數(shù),且相鄰兩對稱軸間的距離為

1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;

2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,ABEF,矩形ABCD所在的平面與圓O所在的平面互相垂直.已知AB2,EF1

(Ⅰ)求證:平面DAF⊥平面CBF;

(Ⅱ)當(dāng)AD1時(shí),求直線FB與平面DFC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜批發(fā)商分別在甲、乙兩市場銷售某種蔬菜(兩個(gè)市場的銷售互不影響),己知該蔬菜每售出1噸獲利500元,未售出的蔬菜低價(jià)處理,每噸虧損100 元.現(xiàn)統(tǒng)計(jì)甲、乙兩市場以往100個(gè)銷售周期該蔬菜的市場需求量的頻數(shù)分布,如下表:

以市場需求量的頻率代替需求量的概率.設(shè)批發(fā)商在下個(gè)銷售周期購進(jìn)噸該蔬菜,在 甲、乙兩市場同時(shí)銷售,以(單位:噸)表示下個(gè)銷售周期兩市場的需求量,(單位:元)表示下個(gè)銷售周期兩市場的銷售總利潤.

(Ⅰ)當(dāng)時(shí),求的函數(shù)解析式,并估計(jì)銷售利潤不少于8900元的槪率;

(Ⅱ)以銷售利潤的期望為決策依據(jù),判斷應(yīng)選用哪—個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點(diǎn)分別為,,圓上有一動(dòng)點(diǎn),軸上方,點(diǎn),直線交橢圓于點(diǎn),連接,.

1)若,求的面積

2)設(shè)直線的斜率存在且分別為,若,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案