7.拋物線y2=2px的焦點為F,過點F斜率為k的直線交拋物線于A,B兩點,以AB為直徑的圓與直線k:x=-2相切,則p的值為( 。
A.2B.4C.6D.由k的值確定

分析 由已知可得,x=-2是拋物線的準(zhǔn)線,即可得出結(jié)論.

解答 解:由已知可得,x=-2是拋物線的準(zhǔn)線,故p=4.
故選:B.

點評 本題考查拋物線的方程與性質(zhì),考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線E:y2=2px(p>0)的準(zhǔn)線與x軸交于點K,過點K作圓(x-5)2+y2=9的兩條切線,切點為M,N,|MN|=3$\sqrt{3}$
(1)求拋物線E的方程;
(2)設(shè)A,B是拋物線E上分別位于x軸兩側(cè)的兩個動點,且$\overrightarrow{OA}•\overrightarrow{OB}=\frac{9}{4}$(其中O為坐標(biāo)原點).
①求證:直線AB必過定點,并求出該定點Q的坐標(biāo);
②過點Q作AB的垂線與拋物線交于G,D兩點,求四邊形AGBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,其中俯視圖中半圓半徑為$\sqrt{2}$,則該幾何體的體積是( 。
A.$2π+8\sqrt{2}+2$B.$2π+8\sqrt{2}+1$C.$π+8\sqrt{2}+1$D.$π+8\sqrt{2}+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|2x-a|+|2x+3|,g(x)=1+$\sqrt{2x-{x^2}}$.
(Ⅰ)若a=1時,解不等式:|2x-a|+|2x+3|≤6;
(Ⅱ)若對任意x1∈[0,2],都存在x2∈R,使得g(x1)=f(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}滿足a1=$\frac{1}{6}$,an+1=$\frac{1}{3}$(an-1).
(1)證明:{an+$\frac{1}{2}$}是等比數(shù)列,并求{an}的通項公式;
(2)證明:a1+a2+…+an<$\frac{2-n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若f(x)=$\left\{{\begin{array}{l}{{a^x},x<0}\\{{{log}_a}x,x>0}\end{array}}$,那么y=f(x)-a的零點個數(shù)有( 。
A.0個B.1個
C.2個D.a的值不同時零點的個數(shù)不同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=$\frac{a}{x}$+lnx(a∈R).
(1)當(dāng)a=3時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)研究y=f(x)在定義域內(nèi)的單調(diào)性;
(3)如果f(x)≥0在定義域內(nèi)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.二次函數(shù)f(x)開口向上,且滿足f(x+1)=f(3-x)恒成立.已知它的兩個零點和頂點構(gòu)成邊長為2的正三角形.
(1)求f(x)的解析式;
(2)討論f(x)在[t,t+3]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線l過點P(-1,2),且傾斜角為45°,則直線l的方程為(  )
A.x-y+1=0B.x-y-1=0C.x-y-3=0D.x-y+3=0

查看答案和解析>>

同步練習(xí)冊答案