【題目】求下列不等式的解集.
(1)x2+4x+4>0
(2)(1﹣2x)(x﹣1)3(x+1)2<0

【答案】解:(1)由x2+4x+4>0可化為(x+2)2>0,(用判別式同樣給分)
故原不等式的解集為{x|x≠﹣2,x∈R};
(2)由(1﹣2x)(x﹣1)3(x+1)2<0可化為(2x﹣1)(x﹣1)3(x+1)2>0,
且方程(1﹣2x)(x﹣1)3(x+1)2=0的根為、1(三重根)和﹣1(二重根),
所以該不等式的解集為{x|x<﹣1或﹣1<x<或x>1}
【解析】(1)按照一元二次不等式的解法步驟進(jìn)行解答即可;
(2)把原不等式化為(2x﹣1)(x﹣1)3(x+1)2>0,根據(jù)對(duì)應(yīng)方程(1﹣2x)(x﹣1)3(x+1)2=0根的情況,即可寫(xiě)出不等式的解集
【考點(diǎn)精析】通過(guò)靈活運(yùn)用解一元二次不等式,掌握求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫(huà):畫(huà)出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫(xiě)出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 為R上的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是(﹣∞,+∞)上的奇函數(shù),且f(x+2)=﹣f(x),當(dāng)0≤x≤1時(shí),f(x)=x.
(1)求f(π)的值;
(2)求﹣1≤x≤3時(shí),f(x)的解析式;
(3)當(dāng)﹣4≤x≤4時(shí),求f(x)=m(m<0)的所有實(shí)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于x的不等式x2﹣x﹣a(a﹣1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的二次方程x2+2mx+2m+1=0.
(Ⅰ)若方程有兩根,其中一根在區(qū)間(﹣1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),求m 的取值范圍.
(Ⅱ)若方程兩根均在區(qū)間(0,1)內(nèi),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,定義兩點(diǎn)P(x1 , y1),Q(x2 , y2)之間的“直角距離”為d(P,Q)=|x1﹣x2|+|y1﹣y2|.現(xiàn)有下列命題:
①已知P(1,3),Q(sin2α,cos2α)(α∈R),則d(P,Q)為定值;
②原點(diǎn)O到直線x﹣y+1=0上任一點(diǎn)P的直角距離d(O,P)的最小值為 ;
③若|PQ|表示P、Q兩點(diǎn)間的距離,那么|PQ|≥ d(P,Q);
④設(shè)A(x,y)且x∈Z,y∈Z,若點(diǎn)A是在過(guò)P(1,3)與Q(5,7)的直線上,且點(diǎn)A到點(diǎn)P與Q的“直角距離”之和等于8,那么滿足條件的點(diǎn)A只有5個(gè).
其中的真命題是 . (寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿.

(1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0且a≠1,函數(shù)y=logax,y=ax , y=x+a在同一坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案