【題目】函數(shù)f(x)=2cos(ωx+φ)(ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,點A、B分別為該部分圖象的最高點與最低點,且這兩點間的距離為4 ,則函數(shù)f(x)圖象的一條對稱軸的方程為(

A.x=
B.x=
C.x=4
D.x=2

【答案】D
【解析】解:∵f(x)=2cos(ωx+φ)為奇函數(shù),
∴f(0)=2cosφ=0,
∴cosφ=0,又0<φ<π,
∴φ= ;
∴f(x)=2cos(ωx+
=﹣2sinωx
=2sin(ωx+π),又ω>0,
∴其周期T= ;
設(shè)A(x1 , 2),B(x2 , ﹣2),
則|AB|= =4
∴|x1﹣x2|=x1﹣x2=4.即 T=4,
∴T= =8,
∴ω=
∴f(x)=2sin( x+π),
∴其對稱軸方程由 x+π=kπ+ (k∈Z)得:
x=4k﹣2.
當k=1時,x=2.
故選D.
【考點精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解心肺疾病是否與年齡相關(guān),現(xiàn)隨機抽取80名市民,得到數(shù)據(jù)如下表:

患心肺疾病

不患心肺疾病

合計

大于40歲

16

小于或等于40歲

12

合計

80

已知在全部的80人中隨機抽取1人,抽到不患心肺疾病的概率為
下面的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d)
(1)請將2×2列聯(lián)表補充完整;
(2)能否在犯錯誤的概率不超過0.025的前提下認為患心肺疾病與年齡有關(guān)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列各項均為正數(shù),其前項和為,且, .

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知Rt△ABC,∠ABC=90°,DAC的中點,⊙O經(jīng)過A,BD三點,CB的延長線交⊙O于點E,過點E作⊙O的切線,交AC的延長線于點F.在滿足上述條件的情況下,當∠CAB的大小變化時,圖形也隨著改變,但在這個變化過程中,有些線段總保持著相等的關(guān)系.

(1)連接圖中已標明字母的某兩點,得到一條新線段與線段CE相等,并說明理由;

(2)若CFCD,求sin F的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=( + )x3(a>0,a≠1).
(1)討論函數(shù)f(x)的奇偶性;
(2)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足2acosC﹣(2b﹣c)=0.
(1)求角A;
(2)若sinC=2sinB,且a= ,求邊b,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù)),曲線在與軸的交點 處的切線斜率為.

(1)求的值及函數(shù)的單調(diào)區(qū)間;

(2)若,且,試證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,其圖象關(guān)于點中心對稱,其導函數(shù)為,當時, ,則不等式的解集為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(sinx,2cosx), =(5 cosx,cosx),函數(shù)f(x)= +| |2
(1)求函數(shù)f(x)的最小正周期;
(2)若x∈( , )時,f(x)=﹣3,求cos2x的值;
(3)若cosx≥ ,x∈(﹣ , ),且f(x)=m有且僅有一個實根,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案