對(duì)于任意的t∈[1,2],函數(shù)在區(qū)間(t,3)上總存在極值,求m的范圍

[  ]

A.

B.

C.-9<m<-5

D.-9<m<0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(I)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(x))處的切線的傾斜角為45°,問(wèn):m在什么范圍取值時(shí),對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[
m
2
+f(x)]在區(qū)間(t,3)上總存在極值?
(III)當(dāng)a=2時(shí),設(shè)函數(shù)h(x)=(p-2)x+
p+2
x
-3,若對(duì)任意的x∈[1,2],f(x)≥h(x)恒成立,求實(shí)數(shù)P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+
m
2
]
在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:
ln2
2
×
ln3
3
×
ln4
4
×…×
lnn
n
1
n
(n≥2,n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R)
(1)求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的圖象在點(diǎn)(2,f)處切線的傾斜角為45°,且對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2(f(x)+
m2
)
在區(qū)間(t,3)上總不為單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間并比較f(x)與f(1)的大小關(guān)系;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+
m
2
]在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)若n≥2,n∈N+,試猜想
ln2
2
×
ln3
3
×
ln4
4
×…×
lnn
n
1
n
的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R)
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=-2時(shí),問(wèn):m在什么范圍取值時(shí),對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[
m2
+f′(x)
]在區(qū)間(t,3)上總存在極值?

查看答案和解析>>

同步練習(xí)冊(cè)答案