【題目】已知正項數(shù)列{an}的前n項和為Sn , 且a1=1,an+12=Sn+1+Sn .
(1)求{an}的通項公式;
(2)設bn=a2n﹣1 , 求數(shù)列{bn}的前n項和Tn .
【答案】解:(1)∵an+12=Sn+1+Sn , ∴當n≥2時,=Sn+Sn﹣1 , 可得an+12﹣=an+1+an ,
∵an+1+an>0,∴an+1﹣an=1.
∴數(shù)列{an}是等差數(shù)列,首項為1,公差為1.
∴an=1+(n﹣1)×1=n.
(2)bn=a2n﹣1=(2n﹣1)2n .
∴數(shù)列{bn}的前n項和Tn=2+3×22+5×23+…+(2n﹣1)2n .
∴2Tn=22+3×23+…+(2n﹣3)2n+(2n﹣1)2n+1 ,
∴﹣Tn=2+2(22+23+…+2n)﹣(2n﹣1)2n+1=﹣2﹣(2n﹣1)2n+1=(3﹣2n)2n+1﹣6,
【解析】(1)由an+12=Sn+1+Sn , 利用遞推關系可得an+12﹣=an+1+an , 由于an+1+an>0,可得an+1﹣an=1.再利用等差數(shù)列的通項公式即可得出;
(2)利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.
【考點精析】認真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關系),還要掌握數(shù)列的通項公式(如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式)的相關知識才是答題的關鍵.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在各項均為正數(shù)的等比數(shù)列{an}中,a1=2,且2a1 , a3 , 3a2成等差數(shù)列.
(Ⅰ) 求等比數(shù)列{an}的通項公式;
(Ⅱ) 若數(shù)列{bn}滿足bn=11﹣2log2an , 求數(shù)列{bn}的前n項和Tn的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市調研考試后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據列聯(lián)表的數(shù)據,若按99%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到9號或10號的概率.
參考公式及數(shù)據:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內角A= ,P為△ABC的外心,若 =λ1 +2λ2 ,其中λ1與λ2為實數(shù),則λ1+λ2的最大值為( )
A.
B.1﹣
C.
D.1+
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)及關于的不等式.
(1)若該不等式的解集為,求實數(shù)的值;
(2)若,求函數(shù)的最小值;
(3)若該不等式的解集中有且只兩個整數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A,B,C的坐標分別為(﹣ ,0),( ,0),(m,n),G,O′,H分別為△ABC的重心,外心,垂心.
(1)寫出重心G的坐標;
(2)求外心O′,垂心H的坐標;
(3)求證:G,H,O′三點共線,且滿足|GH|=2|OG′|.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com