抽簽方式?jīng)Q定出場順序.通過預(yù)賽,選拔出甲、乙等五支隊伍參加決賽.
(Ⅰ)求決賽中甲、乙兩支隊伍恰好排在前兩位的概率;
(Ⅱ)若決賽中甲隊和乙隊之間間隔的隊伍數(shù)記為,求的分布列和數(shù)學(xué)期望.
(Ⅰ)   (Ⅱ)隨機變量的數(shù)學(xué)期望為.

試題分析:(Ⅰ)設(shè)“甲、乙兩支隊伍恰好排在前兩位”為事件,則
. 所以甲、乙兩支隊伍恰好排在前兩位的概率為.      
(Ⅱ)隨機變量的可能取值為.
,
,

.   
隨機變量的分布列為:

因為,
所以隨機變量的數(shù)學(xué)期望為.    
點評:本題考查等可能事件概率的計算,關(guān)鍵是根據(jù)題意,正確列舉基本事件空間,得到其包含基本事件的數(shù)目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

個同樣型號的產(chǎn)品中,有個是正品,個是次品,從中任取個,求(1)其中所含次品數(shù)的期望、方差;(2)事件“含有次品”的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某地區(qū)因干旱缺水,政府向市民宣傳節(jié)約用水,并進(jìn)行廣泛動員 三個月后,統(tǒng)計部門在一個小區(qū)隨機抽取了戶家庭,分別調(diào)查了他們在政府動員前后三個月的月平均用水量(單位:噸),將所得數(shù)據(jù)分組,畫出頻率分布直方圖(如圖所示)

動員前                                 動員后
(Ⅰ)已知該小區(qū)共有居民戶,在政府進(jìn)行節(jié)水動員前平均每月用水量是噸,請估計該小區(qū)在政府動員后比動員前平均每月節(jié)約用水多少噸;
(Ⅱ)為了解動員前后市民的節(jié)水情況,媒體計劃在上述家庭中,從政府動員前月均用水量在范圍內(nèi)的家庭中選出戶作為采訪對象,其中在內(nèi)的抽到戶,求的分布列和期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

離散型隨機變量的分布列為:


1





則X的期望___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某食品加工廠甲,乙兩個車間包裝小食品,在自動包裝傳送帶上每隔30分鐘抽取一袋食品,稱其重量并將數(shù)據(jù)記錄如下:
甲:102  100  98  97  103  101  99
乙: 102  101  99  98  103  98   99
(1)食品廠采用的是什么抽樣方法(不必說明理由)?
(2)根據(jù)數(shù)據(jù)估計這兩個車間所包裝產(chǎn)品每袋的平均質(zhì)量;
(3)分析哪個車間的技術(shù)水平更好些?
附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面內(nèi),不等式確定的平面區(qū)域為,不等式組確定的平面區(qū)域為.
(1)定義橫、縱坐標(biāo)為整數(shù)的點為“整點”. 在區(qū)域中任取3個“整點”,求這些“整點”中恰好有2個“整點”落在區(qū)域中的概率;
(2)在區(qū)域中每次任取一個點,連續(xù)取3次,得到3個點,記這3個點落在區(qū)域中的個數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有一種游戲規(guī)則如下:口袋里共裝有4個紅球和4個黃球,一次摸出4個,若顏色都相同,則
得100分;若有3個球顏色相同,另一個不同,則得50分,其他情況不得分. 小張摸一次得分的期望是_____ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為迎接我校110周年校慶,校友會于日前舉辦了一次募捐愛心演出,有1000 人參加,每人一張門票,每張100元. 在演出過程中穿插抽獎活動.第一輪抽獎從這1000張票根中隨機抽取10張,其持有者獲得價值1000元的獎品,并參加第二輪抽獎活動.第二輪抽獎由第一輪獲獎?wù)擢毩⒉僮靼粹o,電腦隨機產(chǎn)生兩個數(shù),滿足電腦顯示“中獎”,且抽獎?wù)攉@得9000元獎金;否則電腦顯示“謝謝”,則不中獎.
(1)已知校友甲在第一輪抽獎中被抽中,求校友甲在第二輪抽獎中獲獎的概率;
(2)若校友乙參加了此次活動,求校友乙參加此次活動收益的期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在第9屆校園文化藝術(shù)節(jié)棋類比賽項目報名過程中,我校高二(2)班共有16名男生和14名女生預(yù)報名參加,調(diào)查發(fā)現(xiàn),男、女選手中分別有10人和6人會圍棋.
(I)根據(jù)以上數(shù)據(jù)完成以下22列聯(lián)表:
 
會圍棋
不會圍棋
總計

 
 
 

 
 
 
總計
 
 
30
并回答能否在犯錯的概率不超過0.10的前提下認(rèn)為性別與會圍棋有關(guān)?
參考公式:其中n=a+b+c+d
參考數(shù)據(jù):

0.40
0.25
0.10
0.010

0.708
1.323
2.706
6.635
(Ⅱ)若從會圍棋的選手中隨機抽取3人成立該班圍棋代表隊,則該代表隊中既有男又
有女的概率是多少?
(Ⅲ)若從14名女棋手中隨機抽取2人參加棋類比賽,記會圍棋的人數(shù)為,求的期望.

查看答案和解析>>

同步練習(xí)冊答案