【題目】天氣預(yù)報顯示,在今后的三天中,每一天下雨的概率為40%,現(xiàn)用隨機(jī)模擬的方法估計這三天中恰有兩天下雨的概率:先利用計算器產(chǎn)生0--9之間整數(shù)值的隨機(jī)數(shù),并制定用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,再以每3個隨機(jī)數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機(jī)數(shù)
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
則這三天中恰有兩天下雨的概率近似為( )
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為.
(Ⅰ)求滿足的概率;
(Ⅱ)設(shè)三條線段的長分別為和5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,右頂點為,直線過原點,且點在x軸的上方,直線與分別交直線: 于點、.
(1)若點,求橢圓的方程及△ABC的面積;
(2)若為動點,設(shè)直線與的斜率分別為、.
①試問是否為定值?若為定值,請求出;否則,請說明理由;
②求△AEF的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六組[40,50),[50,60) ...[90,100]后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ) 求成績落在[70,80)上的頻率,并補(bǔ)全這個頻率分布直方圖;
(Ⅱ) 估計這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ) 設(shè)學(xué)生甲、乙的成績屬于區(qū)間[40,50),現(xiàn)從成績屬于該區(qū)間的學(xué)生中任選兩人,求甲、乙中至少有一人被選的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABC﹣A1B1C1是底面邊長為2,高為的正三棱柱,經(jīng)過AB的截面與上底面相交于PQ,設(shè)C1P=λC1A1(0<λ<1).
(Ⅰ)證明:PQ∥A1B1;
(Ⅱ)當(dāng)時,在圖中作出點C在平面ABQP內(nèi)的正投影F(說明作法及理由),并求四面體CABF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)l,m是兩條不同的直線,α是一個平面,則下列命題正確的是( )
A. 若l⊥m,mα,則l⊥α
B. 若l⊥α,l∥m,則m⊥α
C. 若l∥α,mα,則l∥m
D. 若l∥α,m∥α,則l∥m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知兩定點、,⊙C的方程為.當(dāng)⊙C的半徑取最小值時:
(1)求出此時m的值,并寫出⊙C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在異于點E的另外一個點F,使得對于⊙C上任意一點P,總有為定值?若存在,求出點F的坐標(biāo),若不存在,請說明你的理由;
(3)在第(2)問的條件下,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足:對任意,,都有成立,且時,.
(1)求的值,并證明:當(dāng)時,;
(2)判斷的單調(diào)性并加以證明;
(3)若函數(shù)在上遞減,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com