【題目】已知橢圓:(a>b>0)過點(diǎn)E(,1),其左、右頂點(diǎn)分別為A,B,左、右焦點(diǎn)為F1,F2,其中F1(,0).
(1)求橢圓C的方程:
(2)設(shè)M(x0,y0)為橢圓C上異于A,B兩點(diǎn)的任意一點(diǎn),MN⊥AB于點(diǎn)N,直線l:x0x+2y0y﹣4=0,設(shè)過點(diǎn)A與x軸垂直的直線與直線l交于點(diǎn)P,證明:直線BP經(jīng)過線段MN的中點(diǎn).
【答案】(1);(2)證明詳見解析.
【解析】
(1)根據(jù)橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為2a,可求出a,已知焦點(diǎn)坐標(biāo),可知c,可求方程.
(2)根據(jù)題意求出ABP的坐標(biāo),求PB直線方程,求出點(diǎn)N坐標(biāo),求出其中點(diǎn),可代入判斷在直線PB上.
(1)由題意知,2a=|EF1|+|EF2|4,
則a=2,c,b,
故橢圓的方程為,
(2)由(1)知A(﹣2,0),B(2,0),
過點(diǎn)A且與x軸垂直的直線的方程為x=﹣2,
結(jié)合方程x0x+2y0y﹣4=0,得點(diǎn)P(﹣2,),
直線PB的斜率為,
直線PB的方程為,
因?yàn)?/span>MN⊥AB于點(diǎn)N,所以N(x0,0),線段MN的中點(diǎn)坐標(biāo)(),
令x=x0,得,
因?yàn)?/span>,所以,
即直線BP經(jīng)過線段MN的中點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
并通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出5人,進(jìn)行體育鍛煉體會(huì)交流,從參加體會(huì)交流的5人中,隨機(jī)選出2人作重點(diǎn)發(fā)言,求恰好選出一名男生的概率.
參考公式:,其中
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,,分別是線段,的中點(diǎn),底面是正三角形,延長(zhǎng)到點(diǎn),使得.
(1)為線段上確定一點(diǎn),當(dāng)平面時(shí),求的值;
(2)當(dāng)平面,且時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F為橢圓(a>b>0)的一個(gè)焦點(diǎn),點(diǎn)A為橢圓的右頂點(diǎn),點(diǎn)B為橢圓的下頂點(diǎn),橢圓上任意一點(diǎn)到點(diǎn)F距離的最大值為3,最小值為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若M、N在橢圓上但不在坐標(biāo)軸上,且直線AM∥直線BN,直線AN、BM的斜率分別為k1和k2,求證:k1k2=e2﹣1(e為橢圓的離心率).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C是球O球面上的三點(diǎn),AC=BC=6,AB,且四面體OABC的體積為24.則球O的表面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)著名數(shù)學(xué)家華羅庚先生曾說:數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象特征.如函數(shù)的圖象大致為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)求曲線C1的極坐標(biāo)方程以及曲線C2的直角坐標(biāo)方程;
(2)若直線l:y=kx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ|=|PQ|,點(diǎn)M的直角坐標(biāo)為(1,0),求△PMQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓:過點(diǎn),且橢圓的離心率為,直線:與橢圓相交于、兩點(diǎn),線段的中垂線交橢圓于、兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求線段長(zhǎng)的最大值;
(3)求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com