【題目】若函數, ,對于給定的非零實數,總存在非零常數,使得定義域內的任意實數,都有恒成立,此時為的類周期,函數是上的級類周期函數.若函數是定義在區(qū)間內的2級類周期函數,且,當時, 函數.若, ,使成立,則實數的取值范圍是( )
A. B. C. D.
【答案】B
【解析】
根據題意,由函數f(x)在[0,2)上的解析式,分析可得函數f(x)在[0,2)上的最值,
結合a級類周期函數的含義,分析可得f(x)在[6,8]上的最大值,對于函數g(x),對其
求導分析可得g(x)在區(qū)間(0,+∞)上的最小值;進而分析,將原問題轉化為g(x)min
≤f(x)max的問題,即可得+m≤8,解可得m的取值范圍,即可得答案.
根據題意,對于函數f(x),當x∈[0,2)時,
分析可得:當0≤x≤1時,f(x)=﹣2x2,有最大值f(0)=,最小值f(1)=﹣,
當1<x<2時,f(x)=f(2﹣x),函數f(x)的圖象關于直線x=1對稱,則此時有﹣<
f(x)<,
又由函數y=f(x)是定義在區(qū)間[0,+∞)內的2級類周期函數,且T=2;
則在∈[6,8)上,f(x)=23f(x﹣6),則有﹣12≤f(x)≤4,
則f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,
則函數f(x)在區(qū)間[6,8]上的最大值為8,最小值為﹣12;
對于函數 ,有g′(x)=﹣+x+1=,
分析可得:在(0,1)上,g′(x)<0,函數g(x)為減函數,
在(1,+∞)上,g′(x)>0,函數g(x)為增函數,
則函數g(x)在(0,+∞)上,由最小值f(1)=+m,
若x1∈[6,8],x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,
必有g(x)min≤f(x)max,即+m≤8,
解可得m≤,即m的取值范圍為(﹣∞,];
故答案為:B
科目:高中數學 來源: 題型:
【題目】下列說法錯誤的是( )
A.若樣本的平均數為5,標準差為1,則樣本的平均數為11,標準差為2
B.身高和體重具有相關關系
C.現有高一學生30名,高二學生40名,高三學生30名,若按分層抽樣從中抽取20名學生,則抽取高三學生6名
D.兩個變量間的線性相關性越強,則相關系數的值越大
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標記有數字,,,這三張卡片除標記的數字外完全相同。隨機有放回地抽取次,每次抽取張,將抽取的卡片上的數字依次記為,,.
(Ⅰ)求“抽取的卡片上的數字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數字,,不完全相同”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.對立事件一定是互斥事件,互斥事件不一定是對立事件
B.事件,同時發(fā)生的概率一定比,恰有一個發(fā)生的概率小
C.若,則事件與是對立事件
D.事件,中至少有一個發(fā)生的概率一定比,中恰有一個發(fā)生的概率大
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某次數學考試中,小江的成績在90分以上的概率是0.25,在的概率是0.48,在的概率是0.11,在的概率是0.09,在60分以下的概率是0.07.計算:
(1)小江在此次數學考試中取得80分及以上的概率;
(2)小江考試及格(成績不低于60分)的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)如下圖所示:在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求證:AC1∥平面CDB1;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查某校高二學生的身高是否與性別有關,隨機調查該校64名高二學生,得到2×2列聯表如表:
男生 | 女生 | 總計 | |
身高低于170cm | 8 | 24 | 32 |
身高不低于170cm | 26 | 6 | 32 |
總計 | 34 | 30 | 64 |
附:K2
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
由此得出的正確結論是( )
A.在犯錯誤的概率不超過0.01的前提下,認為“身高與性別無關”
B.在犯錯誤的概率不超過0.01的前提下,認為“身高與性別有關”
C.有99.9%的把握認為“身高與性別無關”
D.有99.9%的把握認為“身高與性別有關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出如下四個命題:①若“且”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個數是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com