【題目】已知在四棱錐中, 為正三角形, ,底面為平行四邊形,平面平面,點(diǎn)是側(cè)棱的中點(diǎn),平面與棱交于點(diǎn).

(1)求證: ;

(2)若,求平面與平面所成二面角(銳角)的余弦值.

【答案】(1)見解析;(2).

【解析】試題分析:1)由底面是平行四邊形,利用線面平行的判定定理得在利用線面平行的性質(zhì)定理,即可證得

(2)建立空間直角坐標(biāo)系,求得平面和平面的一個法向量,利用空間向量的夾角公式,即可求解平面和平面的二面角的余弦值.

試題解析:

(1)∵底面是平行四邊形,∴,

又∵ ,

又∵四點(diǎn)共面,且平面平面,

.

(2)取中點(diǎn),連接側(cè)面為正三角形,故,又平面平面,且平面平面,平面, 在平行四邊形中, ,故為菱形, 且中點(diǎn), .

如圖,建立空間直角坐標(biāo)系,

因?yàn)?/span>,則,

,點(diǎn)是棱中點(diǎn), 點(diǎn)是棱中點(diǎn), ,

,設(shè)平面的法向量為,

則有, 不妨令,則平面的一個法向量為平面

是平面的一個法向量,

,

∴平面與平面所成的銳二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為(

A. 10000立方尺 B. 11000立方尺

C. 12000立方尺 D. 13000立方尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,的中點(diǎn),以為折痕將向上折起,變?yōu)?/span>,且平面平面.

(Ⅰ)求證:

(Ⅱ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)若不等式的解集為,求的值;

2)若,求的最小值.

3)若 求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個班共有學(xué)生100人,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲取了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如下表(單位:小時(shí)).

6

7

6

7

8

5

6

7

8

(Ⅰ)試估計(jì)班學(xué)生人數(shù);

(Ⅱ)從班和班抽出來的學(xué)生中各選一名,記班選出的學(xué)生為甲,班選出的學(xué)生為乙,若學(xué)生鍛煉相互獨(dú)立,求甲的鍛煉時(shí)間大于乙的鍛煉時(shí)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,四邊形

為矩形,平面平面.

I)求證:平面;

II)點(diǎn)在線段上運(yùn)動,設(shè)平面與平面所成二面角的平面角為,

試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,角的對邊分別為

)若,求面積的最大值;

)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為OD、E、F為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、EF重合,得到三棱錐。當(dāng)△ABC的邊長變化時(shí),所得三棱錐體積(單位:cm3)的最大值為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,,均與底面垂直,且為直角梯形,,,分別為線段,的中點(diǎn),為線段上任意一點(diǎn).

(1)證明:平面.

(2)若,證明:平面平面.

查看答案和解析>>

同步練習(xí)冊答案