【題目】【2017屆廣東省深圳市高三下學期第一次調(diào)研考試(一模)數(shù)學(文)】已知函數(shù)的導函數(shù),為自然對數(shù)的底數(shù).

(1)討論的單調(diào)性;

(2)當時,證明:;

(3)當時,判斷函數(shù)零點的個數(shù),并說明理由.

【答案】(1)①當時, 上為減函數(shù);②當時, 的減區(qū)間為,增區(qū)間為;(2) 證明見解析;(3)一個零點,理由見解析.

【解析】

試題分析:(1)討論函數(shù)單調(diào)性,先求導,當時,,故上為減函數(shù);當時,解可得,故的減區(qū)間為,增區(qū)間為;(2)根據(jù),構造函數(shù),設,,當時,,所以是增函數(shù),,得證;(3)判斷函數(shù)的零點個數(shù),需要研究函數(shù)的增減性及極值端點,由(1)可知,當時,是先減再增的函數(shù),其最小值為,而此時,且,故恰有兩個零點

從而得到的增減性,時,;當時,;當時,,從而兩點分別取到極大值和極小值,再證明極大值,所以函數(shù)不可能有兩個零點,只能有一個零點.

試題解析:

(1)對函數(shù)求導得,

,

①當時,,故上為減函數(shù);

②當時,解可得,故的減區(qū)間為,增區(qū)間為

(2) ,設,則,

易知當時,,

;

(3)由(1)可知,當時,是先減再增的函數(shù),

其最小值為,

而此時,且,故恰有兩個零點

∵當時,;當時,;當時,

兩點分別取到極大值和極小值,且

,

,

,∴,但當時,,則,不合題意,所以,故函數(shù)的圖象與軸不可能有兩個交點.

∴函數(shù)只有一個零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】是否存在常數(shù),使等式對于一切都成立?若不存在,說明理由;若存在,請用數(shù)學歸納法證明?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人獨立地對某一技術難題進行攻關。甲能攻克的概率為,乙能攻克的概率為,丙能攻克的概率為.

1)求這一技術難題被攻克的概率;

2)若該技術難題末被攻克,上級不做任何獎勵;若該技術難題被攻克,上級會獎勵萬元。獎勵規(guī)則如下:若只有1人攻克,則此人獲得全部獎金萬元;若只有2人攻克,則獎金獎給此二人,每人各得萬元;若三人均攻克,則獎金獎給此三人,每人各得萬元。設甲得到的獎金數(shù)為X,求X的分布列和數(shù)學期望。(本題滿分12分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關于x的線性回歸方程;

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分,第(1)問 5分,第(2)問 5 分)

近年來,微信越來越受歡迎,許多人通過微信表達自己、交流思想和傳遞信息,微信是現(xiàn)代生活中進行信息交流的重要工具.而微信支付為用戶帶來了全新的支付體驗,支付環(huán)節(jié)由此變得簡便而快捷.某商場隨機對商場購物的名顧客進行統(tǒng)計,其中歲以下占,采用微信支付的占, 歲以上采用微信支付的占。

(1)請完成下面列聯(lián)表:

歲以下

歲以上

合計

使用微信支付

未使用微信支付

合計

(2)并由列聯(lián)表中所得數(shù)據(jù)判斷有多大的把握認為“使用微信支付與年齡有關”?

參考公式: , .

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y()與銷售單價x()之間的關系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

(1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達式;

(2)設公司獲得的毛利潤(毛利潤=銷售總價-成本總價)S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市出租車收費標準如下:起步價為8元,起步里程為3 km(不超過3 km按起步價付費);超過3 km但不超過8 km時,超過部分按每千米2.15元收費;超過8 km時,超過部分按每千米2.85元收費,另每次乘坐需付燃油附加費1元.現(xiàn)某人乘坐一次出租車付費22.6元,則此次出租車行駛了________km.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,恒有成立,求實數(shù)的取值范圍;

(2)若函數(shù)有兩個極值點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2014陜西理8】原命題為“若互為共軛復數(shù),則”,關于逆命題,否命題,逆否命題真假性的判斷依次如下,正確的是(

A. 真,假,真 B. 假,假,真

C. 真,真,假 D. 假,假,假

查看答案和解析>>

同步練習冊答案