【題目】已知一元二次不等式f(x)<0的解集為{x|x<﹣1或x> },則f(10x)>0的解集為( )
A.{x|x<﹣1或x>﹣lg2}
B.{x|﹣1<x<﹣lg2}
C.{x|x>﹣lg2}
D.{x|x<﹣lg2}
【答案】D
【解析】解:由題意可知f(x)>0的解集為{x|﹣1<x< },
故可得f(10x)>0等價(jià)于﹣1<10x< ,
由指數(shù)函數(shù)的值域?yàn)椋?,+∞)一定有10x>﹣1,
而10x< 可化為10x< ,即10x<10﹣lg2,
由指數(shù)函數(shù)的單調(diào)性可知:x<﹣lg2
故選:D
【考點(diǎn)精析】掌握解一元二次不等式是解答本題的根本,需要知道求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫(huà):畫(huà)出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫(xiě)出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=|x+1|+|x﹣1|.
(Ⅰ)求不等式f(x)<4的解集;
(Ⅱ)若不等式f(x)﹣|a﹣1|<0有解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次不等式f(x)<0的解集為{x|x<﹣1或 ,則f(ex)>0的解集為( )
A.{x|x<﹣1或x>﹣ln3}
B.{x|﹣1<x<﹣ln3}
C.{x|x>﹣ln3}
D.{x|x<﹣ln3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= .
(1)計(jì)算f(3),f(4),f( )及f( )的值;
(2)由(1)的結(jié)果猜想一個(gè)普遍的結(jié)論,并加以證明;
(3)求值f(1)+f(2)+…+f(2017)+f( )+f( )+…+f( ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠擬生產(chǎn)甲、乙兩種適銷(xiāo)產(chǎn)品,每件產(chǎn)品甲的銷(xiāo)售收入為3千元,每件產(chǎn)品乙的銷(xiāo)售收入為4千元.這兩種產(chǎn)品都需要在A,B兩種不同的設(shè)備上加工,按工藝規(guī)定,一件產(chǎn)品甲和一件產(chǎn)品乙在各設(shè)備上需要加工工時(shí)如表所示:
設(shè)備 | A | B |
甲 | 2h | 1h |
乙 | 2h | 2h |
已知A,B兩種設(shè)備每月有效使用臺(tái)時(shí)數(shù)分別為400h、300h(一臺(tái)設(shè)備工作一小時(shí)稱為一臺(tái)時(shí)).分別用x,y表示計(jì)劃每月生產(chǎn)甲、乙產(chǎn)品的件數(shù).
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(Ⅱ)問(wèn)每月分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使每月的收入最大?并求出此最大收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知樣本數(shù)據(jù)a1 , a2 , a3 , a4 , a5的方差s2= (a12+a22+a32+a42+a52﹣80),則樣本數(shù)據(jù)2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的方程為y2=4x,直線L過(guò)定點(diǎn)P(﹣2,1),斜率為k.當(dāng)k為何值時(shí)直線與拋物線:
(1)只有一個(gè)公共點(diǎn);
(2)有兩個(gè)公共點(diǎn);
(3)沒(méi)有公共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的偶函數(shù)f(x)在(﹣∞,0]上是減函數(shù),且 =2,則不等式f(log4x)>2的解集為( )
A.
B.(2,+∞)
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com