已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)不與坐標(biāo)軸平行的直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
(1)橢圓的方程為;(2)面積的最大值為.
解析試題分析:(1)求橢圓的方程,可利用待定系數(shù)法求出的值即可,依題意,可得:,從而可得的值,即得橢圓的方程;(2)由于直線l是任意的,故可設(shè)其方程為.根據(jù)坐標(biāo)原點(diǎn)到直線的距離為,可得與的關(guān)系式,從而將雙參數(shù)問(wèn)題變?yōu)閱螀?shù)問(wèn)題.將作為底邊,則的高為常數(shù),所以要使的面積最大,就只需邊最大.將用或表示出來(lái)便可求得的最大值,從而求得的面積的最大值.
試題解析:(1)依題意,可得:
所以,橢圓;
(2)坐標(biāo)原點(diǎn)到直線的距離為,所以,
聯(lián)立可得:
所以,
由題意,得:,令,所以
,
所以,.
考點(diǎn):橢圓方程,直線與圓錐曲線;點(diǎn)到直線的距離公式,基本不等式;弦長(zhǎng)及三角形的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線C:y2=2px(p>0)過(guò)點(diǎn)A(1,-2).
(1)求拋物線C的方程,并求其準(zhǔn)線方程.
(2)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中心在原點(diǎn)的雙曲線C的一個(gè)焦點(diǎn)是F1(一3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線與雙曲線C相交于兩個(gè)不同的點(diǎn)M, N,且線段MN的
垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓與的離心率相等. 直線與曲線交于兩點(diǎn)(在的左側(cè)),與曲線交于兩點(diǎn)(在的左側(cè)),為坐標(biāo)原點(diǎn),.
(1)當(dāng)=,時(shí),求橢圓的方程;
(2)若,且和相似,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的右焦點(diǎn)為,直線與軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(1)求橢圓的方程;
(2)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(、為直徑的兩個(gè)端點(diǎn)),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在橢圓C上,·=0,3||·||=-5·,||=2,過(guò)點(diǎn)F2且與坐標(biāo)軸不垂直的直線交橢圓于P,Q兩點(diǎn).
(1)求橢圓C的方程;
(2)線段OF2(O為坐標(biāo)原點(diǎn))上是否存在點(diǎn)M(m,0),使得·=·?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為橢圓,的左右焦點(diǎn),是坐標(biāo)原點(diǎn),過(guò)作垂直于軸的直線交橢圓于,設(shè) .
(1)證明: 成等比數(shù)列;
(2)若的坐標(biāo)為,求橢圓的方程;
(3)在(2)的橢圓中,過(guò)的直線與橢圓交于、兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知、分別是橢圓的左、右焦點(diǎn).
(1)若是第一象限內(nèi)該橢圓上的一點(diǎn),,求點(diǎn)的坐標(biāo);
(2)設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且為銳角(其
中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的焦點(diǎn)坐標(biāo)為F1(-1,0),F2(1,0),過(guò)F2垂直于長(zhǎng)軸的直線交橢圓于P,Q兩點(diǎn),且|PQ|=3.
(1)求橢圓的方程;
(2)過(guò)F2的直線l與橢圓交于不同的兩點(diǎn)M,N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com