精英家教網 > 高中數學 > 題目詳情
如圖,已知中心在原點,焦點在x軸上的橢圓經過點(),且它的左焦點F1將長軸分成2∶1,F2是橢圓的右焦點.

(1)求橢圓的標準方程;
(2)設P是橢圓上不同于左右頂點的動點,延長F1P至Q,使Q、F2關于∠F1PF2的外角平分線l對稱,求F2Q與l的交點M的軌跡方程.
 解:(1)設橢圓的方程為(a>b>0),半焦距為c,則a2-b2=c2
∵ 橢圓經過點(,),

又∵ 它的左焦點F將長軸分成2∶1,
∴ (a+c)∶(a-c)=2∶1,整理得a=3c.
聯立①②③,即 解得a2=36,b2=32,c2=4.
∴ 橢圓的標準方程為.           ……………………4分
(2)∵ Q、F2關于∠F1PF2的外角平分線l對稱,
∴ |PQ|=|PF2|,且M是F2Q的中點.
由橢圓的定義知|PF1|+|PF2|=12,
∴ |PF1|+|PQ|=12,即|F1Q|=12,
∴ Q的軌跡是以F1(-2,0)為圓心,12為半徑的圓(除去與x軸的兩個交點),其軌跡方程為(x+2)2+y2=144(y≠0). …………………7分
設M(x,y),Q(a,b),由(1)知F2(2,0),
  可整理得a=2x-2,b=2y,
∵ Q(a,b)在圓(x+2)2+y2=144(y≠0)上運動,
∴ (2x-2+2)2+(2y)2=144,即x2+y2=36.
∴ M的軌跡方程為x2+y2=36(y≠0).      ……………………10分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知焦點在軸上,中心在坐標原點的橢圓C的離心率為,且過點(題干自編)
(I)求橢圓C的方程;
(II)直線分別切橢圓C與圓(其中)于兩點,求的最大值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓),其焦距為,若),則稱橢圓為“黃金橢圓”.
(1)求證:在黃金橢圓)中,、成等比數列.
(2)黃金橢圓)的右焦點為為橢圓上的
任意一點.是否存在過點、的直線,使軸的交點滿足?若存在,求直線的斜率;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓)的左、右焦點分別是、,以、、、為頂點的菱形的內切圓過焦點、.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關的真命題,并加以證明.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設p:方程表示是焦點在y軸上的橢圓;q:三次函數
內單調遞增,.求使“”為真命題的實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知、分別是橢圓C:的左焦點和右焦點,O是坐標系原點, 且橢圓C的焦距為6, 過的弦兩端點所成⊿的周長是.
(Ⅰ).求橢圓C的標準方程.
(Ⅱ)已知點,是橢圓C上不同的兩點,線段的中點為.
求直線的方程;
(Ⅲ)若線段的垂直平分線與橢圓C交于點、,試問四點、、是否在同一個圓上,若是,求出該圓的方程;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

,橢圓方程為,拋物線方程為.如圖所示,過點軸的平行線,與拋物線在第一象限的交點為,已知拋物線在點的切線經過橢圓的右焦點
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

雙曲線與橢圓有共同的焦點,點
是雙曲線的漸近線與橢圓的一個交點,求橢圓與雙曲線的標準方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

((本小題滿分14分)
已知橢圓的離心率為,且橢圓上一點與橢圓的兩個焦點構成的三角形周長為
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓交于兩點,且以為直徑的圓過橢圓的右頂點
面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

((本小題滿分12分)
橢圓的兩個焦點F1、F2,點P在橢圓C上,且PF1⊥F1F2,且|PF1|=
(I)求橢圓C的方程。
(II)以此橢圓的上頂點B為直角頂點作橢圓的內接等腰直角三角形ABC,這樣的直角三角形是否存在?若存在,請說明有幾個;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案