.函數(shù)
f(
x)=
a4+5
a2x2-
x6的導(dǎo)數(shù)為
A.4a3+10ax2-x6 | B.4a3+10a2x-6x5 |
C.10a2x-6x5 | D.以上都不對 |
本題考查多項(xiàng)式的導(dǎo)數(shù).關(guān)鍵是由函數(shù)解析式分清自變量與參數(shù).
由f(x)=a4+5a2x2-x6知自變量為x,∴f′(x)=10a2x-6x5.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分16分)設(shè)實(shí)數(shù)a為正數(shù),函數(shù)
.(Ⅰ)當(dāng)
時(shí),求曲線
在
處的切線方程; (Ⅱ)當(dāng)
時(shí),求函數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(1)求
的導(dǎo)數(shù);
(2)求
的導(dǎo)數(shù);
(3)求
的導(dǎo)數(shù);
(4)求y=
的導(dǎo)數(shù);
(5)求y=
的導(dǎo)數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分13分)已知定義在正實(shí)數(shù)集上的函數(shù)
,
,其中
. 設(shè)兩曲線
,
有公共點(diǎn),且在該點(diǎn)處的切線相同.(I)用
表示
;(II)求證:
(
).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)已知
(I)若
a=3,求
的單調(diào)區(qū)間和極值;(II)已知
是
的兩個(gè)不同的極值點(diǎn),且
,若
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知y=x3-2x+1,則y′=___________;y′|x=2=___________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
對于三次函數(shù)
,定義:設(shè)
是函數(shù)
的導(dǎo)函數(shù)
的導(dǎo)數(shù),若
有實(shí)數(shù)解
,則稱點(diǎn)
為函數(shù)
的“拐點(diǎn)”,F(xiàn)已知
,請解答下列問題:
(1)求函數(shù)
的“拐點(diǎn)”A的坐標(biāo);
(2)求證
的圖象關(guān)于“拐點(diǎn)”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關(guān)“拐點(diǎn)”的一個(gè)結(jié)論(此結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分13分)
已知f(x)=ln(1+x
2)+ax(a≤0)。
(1)討論f(x)的單調(diào)性。
(2)證明:(1+
)(1+
)…(1+
)<e (n∈N*,n≥2,其中無理數(shù)e=2.71828…)
查看答案和解析>>