精英家教網 > 高中數學 > 題目詳情

設橢圓的離心率為e=

(1)橢圓的左、右焦點分別為F1、F2、A是橢圓上的一點,且點A到此兩焦點的距離之和為4,求橢圓的方程.

(2)求b為何值時,過圓x2+y2=t2上一點M(2,)處的切線交橢圓于Q1、Q2兩點,而且OQ1⊥OQ2

答案:
解析:

  

    10分

  


練習冊系列答案
相關習題

科目:高中數學 來源:福建福州八中2009年元月高三調研考試試卷(數學文) 題型:044

設橢圓的離心率為e=,點A是橢圓上的一點,且點A到橢圓C兩焦點的距離之和為4.

(1)求橢圓C的方程;

(2)橢圓C上一動點P(x0,y0)關于直線y=2x的對稱點為P1(x1,y1),求3x1-4y1的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

9.設橢圓的離心率為e=,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)

A.必在圓x2+y2=2內             B.必在圓x2+y2=2上

C.必在圓x2+y2=2外             D.以上三種情形都有可能

查看答案和解析>>

科目:高中數學 來源: 題型:

12.設橢圓的離心率為e=,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)

A.必在圓x2+y2=2上             B.必在圓x2+y2=2外

C.必在圓x2+y2=2內             D.以上三種情形都有可能

查看答案和解析>>

科目:高中數學 來源:2007年普通高等學校招生全國統(tǒng)一考試理科數學卷(江西) 題型:選擇題

設橢圓的離心率為e,右焦點為F(c,0),方程ax2bxc=0的兩個實根分別為x1x2,則點P(x1,x2)

A.必在圓x2y2=2內             B.必在圓x2y2=2上

C.必在圓x2y2=2外             D.以上三種情形都有可能

 

查看答案和解析>>

科目:高中數學 來源: 題型:

設橢圓的離心率為e=,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)

A.必在圓x2+y2=2內             B.必在圓x2+y2=2上

C.必在圓x2+y2=2外             D.以上三種情形都有可能

查看答案和解析>>

同步練習冊答案