C
 
1
5
+C
 
2
5
+
C
3
5
的值為
25
25
分析:直接展開組合數(shù)公式計算.
解答:解:C
 
1
5
+C
 
2
5
+
C
3
5
=5+
5!
2!•3!
+
5!
3!•2!
=5+10+10=25.
故答案為25.
點評:本題考查了組合及組合數(shù)公式,是基礎的會考題型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某學校課題組為了研究學生的數(shù)學成績與物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(滿分100分)如下表所示:
序號 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
數(shù)學成績 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成績 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若單科成績85分以上(含85分),則該科成績?yōu)閮?yōu)秀.
(1)根據上表完成下面的2×2列聯(lián)表(單位:人):
數(shù)學成績優(yōu)秀 數(shù)學成績不優(yōu)秀   合   計
物理成績優(yōu)秀
物理成績不優(yōu)秀
合   計 20
(2)根據題(1)中表格的數(shù)據計算,有多大的把握,認為學生的數(shù)學成績與物理成績之間有關系?
參考數(shù)據:
①假設有兩個分類變量X和Y,它們的值域分別為{x1,x2}和y1,y2,其樣本頻數(shù)列聯(lián)表(稱為2×2列聯(lián)表)為:
y1 y2 合計
x1 a b a+b
x2 c d c+d
合計 a+c b+d a+b+c+d
則隨機變量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量;
②獨立檢驗隨機變量K2的臨界值參考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)對某市工薪階層關于“樓市限購令”的態(tài)度進行調查,隨機抽調了50人,他們月收入的頻數(shù)分布及對樓市“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 8 12 5 2 1
(Ⅰ)由以上統(tǒng)計數(shù)據填下面2乘2列聯(lián)表并問是否有99%的把握認為“月收入以5500為分界點對“樓市限購令”的態(tài)度有差異;
月收入不低于55百元的人數(shù) 月收入低于55百元的人數(shù) 合計
贊成 a= c=
不贊成 b= d=
合計
(Ⅱ)若對在[15,25),[25,35)的被調查中各隨機選取兩人進行追蹤調查,記選中的4人中不贊成“樓市限購令”人數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學期望.
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
參考值表:
P(K^2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

商店某種貨物的進價下降了8%,但銷售價沒變,于是這種貨物的銷售利潤由原來的r%增加到(r+10)%,那么r的值等于(    )

A.12              B.15              C.25             D.50

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆黑龍江省高二上學期期末考試文科數(shù)學 題型:選擇題

某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了了解該單位職工的健康狀況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為(   )

A 7                  B 15                C 25               D 35

 

查看答案和解析>>

同步練習冊答案