【題目】某城市9年前分別同時開始建設(shè)物流城和濕地公園,物流城3年建設(shè)完成,建成后若年投入x億元,該年產(chǎn)生的經(jīng)濟凈效益為億元;濕地公園4年建設(shè)完成,建成后的5年每年投入見散點圖.公園建成后若年投入x億元,該年產(chǎn)生的經(jīng)濟凈效益為億元.
(1)對濕地公園,請在中選擇一個合適模型,求投入額x與投入年份n的回歸方程;
(2)從建設(shè)開始的第10年,若對物流城投入0.25億元,預(yù)測這一年物流城和濕地公園哪個產(chǎn)生的年經(jīng)濟凈效益高?請說明理由.
參考數(shù)據(jù)及公式:,;當時,,,回歸方程中的;回歸方程斜率與截距,.
【答案】(1);(2)該年濕地公園產(chǎn)生的年經(jīng)濟凈效益高,理由見解析.
【解析】
(1)由散點圖可得應(yīng)該選擇模型,令,代入公式可得、,即可得投入額x與投入年份n的回歸方程;
(2)由題意將代入即可得物流城第10年的年經(jīng)濟凈效益;由回歸方程可預(yù)測濕地公園第10年的投入,進而可得濕地公園第10年的經(jīng)濟凈效益;比較大小即可得解.
(1)根據(jù)散點圖,應(yīng)該選擇模型,
令,則,
,
故所求回歸方程是即;
(2)由題意,物流城第10年的年經(jīng)濟凈效益為(億元);
濕地公園第10年的投入約為(億元),
該年的經(jīng)濟凈效益為(億元);
因為,所以該年濕地公園產(chǎn)生的年經(jīng)濟凈效益高.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)[選修4-5:不等式選講]
已知函數(shù)=|x-a|+(a≠0)
(1)若不等式-≤1恒成立,求實數(shù)m的最大值;
(2)當a<時,函數(shù)g(x)=+|2x-1|有零點,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線過原點且傾斜角為.以坐標原點為極點,軸正半軸為極軸建立坐標系,曲線的極坐標方程為.在平面直角坐標系中,曲線與曲線關(guān)于直線對稱.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)若直線過原點且傾斜角為,設(shè)直線與曲線相交于,兩點,直線與曲線相交于,兩點,當變化時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點且與直線相切,圓心的軌跡為曲線,點為曲線上一點.
(1)求的值及曲線的方程;
(2)若為曲線上異于的兩點,且.記點到直線的距離分別為,判斷是否為定值,若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,,,,四點中恰有三點在橢圓上,拋物線焦點到準線的距離為.
(1)求橢圓、拋物線的方程;
(2)過橢圓右頂點Q的直線與拋物線交于點A、B,射線、分別交橢圓于點、.
(i)證明:為定值;
(ii)記、的面積分別為、,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,,,,.
(1)若,,求的值;
(2)若數(shù)列的前項成公差不為0的等差數(shù)列,求的最大值;
(3)若,是否存在,使為等比數(shù)列?若存在,求出所有符合題意的的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點到定點的距離比到定直線的距離小1.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點和.設(shè)線段, 的中點分別為,求證:直線恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生活超市有一專柜預(yù)代理銷售甲乙兩家公司的一種可相互替代的日常生活用品.經(jīng)過一段時間分別單獨試銷甲乙兩家公司的商品,從銷售數(shù)據(jù)中隨機各抽取50天,統(tǒng)計每日的銷售數(shù)量,得到如下的頻數(shù)分布條形圖.甲乙兩家公司給該超市的日利潤方案為:甲公司給超市每天基本費用為90元,另外每銷售一件提成1元;乙公司給超市每天的基本費用為130元,每日銷售數(shù)量不超過83件沒有提成,超過83件的部分每件提成10元.
(Ⅰ)求乙公司給超市的日利潤(單位:元)與日銷售數(shù)量的函數(shù)關(guān)系;
(Ⅱ)若將頻率視為概率,回答下列問題:
(1)求甲公司產(chǎn)品銷售數(shù)量不超過87件的概率;
(2)如果僅從日均利潤的角度考慮,請你利用所學(xué)過的統(tǒng)計學(xué)知識為超市作出抉擇,選擇哪家公司的產(chǎn)品進行銷售?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝三角,又稱帕斯卡三角,是二項式系數(shù)在三角形中的一種幾何排列,在我國南宋數(shù)學(xué)家楊輝所著的《評解九章算法》(年)一書中用如圖所示的三角形解釋二項式乘方展開式的系數(shù)規(guī)律,現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:,,,,,,,,,,,,,,…….記作數(shù)列,若數(shù)列的前項和為,則=( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com