如果tanθ=2,1+sinθcosθ的值為
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:由條件利用同角三角函數(shù)的基本關(guān)系求得1+sinθcosθ的值.
解答: 解:∵tanθ=2,∴1+sinθcosθ=1+
sinθcosθ
sin2θ+cos2θ
=1+
tanθ
tan2θ+1
=1+
2
4+1
=
7
5
,
故答案為:
7
5
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

比較大小:log23
 
log35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x(x+3)|,若y=f(x)-x+b有四個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(ωx+
π
3
)(ω>0)的圖象經(jīng)過(guò)點(diǎn)(
5
6
π,0),若函數(shù)f(x)在[0,3]上恰好一次取得最大值2,一次取得最小值-2,則ω的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意的向量
a
,
b
使不等式|
a
|-|
b
|≤|
a
+
b
|≤|
a
|+|
b
|成立的條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓柱的高為4cm,底面半徑為3cm,上底面一條半徑OA與下底面一條半徑O′B′成60°角,求:
(1)線段AB′的長(zhǎng);
(2)直線AB′與圓柱的軸OO′所成的角(用反三角表示);
(3)點(diǎn)A沿圓柱側(cè)面到達(dá)點(diǎn)B′的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=2
e1
-3
e2
b
=2
e1
+3
e2
,且
e1
e2
不共線,向量
c
=2
e1
-9
e2
.若存在實(shí)數(shù)λ,μ,使向量
d
a
b
c
共線,則λ與μ之間的關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷|
a
+
b
|與|
a
|+|
b
|的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓F1:(x+1)2+y2=12,圓F2:(x-1)2+y2=9,若動(dòng)圓C與圓F1外切且與圓F2內(nèi)切,求動(dòng)圓圓心C的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案