如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F分別是棱AD,AA1,AB的中點(diǎn).
(1)證明:直線EE1∥平面FCC1;
(2)求二面角B-FC1-C的余弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90°,AB=4,CD=1,點(diǎn)M在PB上,PB=4PM,PB與平面ABCD成30°的角.
求證:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱ABCA1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1A=,M是CC1的中點(diǎn).
(1)求證:A1B⊥AM;
(2)求二面角BAMC的平面角的大。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四棱錐中,底面為菱形,平面,,分別是的中點(diǎn).
(1)證明:平面;
(2)取,若為上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求平面A1DB與平面DBB1夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在正三棱柱ABC-A1B1C1中,AB=2,AA1=,點(diǎn)D為AC的中點(diǎn),點(diǎn)E在線段AA1上.
(1)當(dāng)AE∶EA1=1∶2時(shí),求證DE⊥BC1;
(2)是否存在點(diǎn)E,使二面角D-BE-A等于60°,若存在求AE的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在底面邊長(zhǎng)為2,高為1的正四梭柱ABCD=A1B1C1D1中,E,F(xiàn)分別為BC,C1D1的中點(diǎn).
(1)求異面直線A1E,CF所成的角;
(2)求平面A1EF與平面ADD1A1所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖, 在直角梯形中,
∥
點(diǎn)分別是的中點(diǎn),現(xiàn)將折起,使,
(1)求證:∥平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com