分析 設(shè)以P為中點(diǎn)的弦的端點(diǎn)為A(x1,y1),B(x2,y2),得到x1+x2=4,y1+y2=2,作差法求出KAB=$\frac{{{y}_{1}-y}_{2}}{{{x}_{1}-x}_{2}}$=-$\frac{{2b}^{2}}{{a}^{2}}$,根據(jù)$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{1}{3}$,求出k的值,從而求出直線(xiàn)方程即可.
解答 解:設(shè)以P為中點(diǎn)的弦的端點(diǎn)為A(x1,y1),B(x2,y2),
則x1+x2=4,y1+y2=2,
∵A、B是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1上的點(diǎn),
∴$\frac{{{x}_{1}}^{2}}{{a}^{2}}$+$\frac{{{y}_{1}}^{2}}{^{2}}$=1①,$\frac{{{x}_{2}}^{2}}{{a}^{2}}+\frac{{{y}_{2}}^{2}}{^{2}}$=1②,
①-②得:$\frac{{(x}_{1}{+x}_{2}){(x}_{1}{-x}_{2})}{{a}^{2}}$+$\frac{{(y}_{1}{+y}_{2}){(y}_{1}{-y}_{2})}{^{2}}$=0,
∴$\frac{2{(x}_{1}{-x}_{2})}{{a}^{2}}$=-$\frac{{{y}_{1}-y}_{2}}{^{2}}$,
∴KAB=$\frac{{{y}_{1}-y}_{2}}{{{x}_{1}-x}_{2}}$=-$\frac{{2b}^{2}}{{a}^{2}}$,
∵e=$\frac{c}{a}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{1}{3}$,
∴$\frac{^{2}}{{a}^{2}}$=$\frac{8}{9}$,
∴KAB=-$\frac{16}{9}$,
故直線(xiàn)AB的方程是:16x+9y-41=0,
以P為中點(diǎn)的弦所在直線(xiàn)方程是:
16x+9y-41=0,
故答案為:16x+9y-41=0.
點(diǎn)評(píng) 解決此類(lèi)問(wèn)題的關(guān)鍵是熟練掌握直線(xiàn)與橢圓的位置關(guān)系的判定,以及掌握弦中點(diǎn)與中點(diǎn)弦問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∈A,2x∈B | B. | ?x∉A,2x∉B | C. | ?x∈A,2x∉B | D. | ?x∉A,2x∉B |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
運(yùn)動(dòng)員 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
甲 | 8.7 | 9.1 | 9.0 | 8.9 | 9.3 |
乙 | 8.9 | 9.0 | 9.1 | 8.8 | 9.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com