在(x+y)n的展開(kāi)式中,若第九項(xiàng)系數(shù)最大,則n的值可能等于(  )
A.14,15B.15,16C.16,17D.14,15,16
(x+y)n的展開(kāi)式的通項(xiàng)為T(mén)r+1=
Crn
xn-ryr
,
則某一項(xiàng)的系數(shù)即為二項(xiàng)式系數(shù),
由二項(xiàng)式系數(shù)的性質(zhì)得,
當(dāng)n為偶數(shù)時(shí),中間一項(xiàng)的二項(xiàng)式系數(shù)
C
n
2
n
最大;
當(dāng)n為奇數(shù)時(shí),中間兩項(xiàng)的二項(xiàng)式系數(shù)
C
n-1
2
n
,
C
n+1
2
n
最大.
∴當(dāng)n為偶數(shù)時(shí),有
n
2
=8
即n=16,
當(dāng)n為奇數(shù)時(shí),有
n-1
2
=8即n=17,或
n+1
2
=8,即n=15,
∴n的值可能等于15,16,17.
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某超市為了解顧客的購(gòu)物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購(gòu)物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次購(gòu)物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顧客數(shù)(人)
x
30
25
y
10
結(jié)算時(shí)間(分鐘/人)
1
1.5
2
2.5
3
已知這100位顧客中一次購(gòu)物量超過(guò)8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購(gòu)物的結(jié)算時(shí)間X的分布列與數(shù)學(xué)期望;
(Ⅱ)若某顧客到達(dá)收銀臺(tái)時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過(guò)2.5分鐘的概率.
(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(x-1)8的展開(kāi)式的第6項(xiàng)的系數(shù)是( 。
A.C86B.-C86C.C85D.-C85

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二項(xiàng)式(
x
2
-
1
3x
)n(n∈N*)
的展開(kāi)式中第3項(xiàng)的系數(shù)與第1項(xiàng)的系數(shù)的比是144:1.
(Ⅰ)求展開(kāi)式中所有的有理項(xiàng);
(Ⅱ)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)以及系數(shù)絕對(duì)值最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若(a-2x)5展開(kāi)式中x2的系數(shù)為40,且(a-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5
(1)求(a0+a2+a4)2-(a1+a3+a5)2的值;
(2)求|a0|+|a1|+|a2|+|a3|+|a4|+|a5|的值;
(3)求a1+2a2+3a3+4a4+5a5的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)復(fù)數(shù)x=
2i
1-i
(i是虛數(shù)單位),則
C12013
x+
C22013
x2+
C32013
x3+…+
C20132013
x2013
=(  )
A.iB.-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知(1+ax)6的展開(kāi)式中,含x3項(xiàng)的系數(shù)等于160,則實(shí)數(shù)a=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

盒中有9個(gè)正品、3個(gè)次品零件,每次取1個(gè)零件,如果取出的次品不再放回,則在取得正品前已取出的次品數(shù)ξ的分布列________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某中學(xué)在高一開(kāi)設(shè)了數(shù)學(xué)史等4門(mén)不同的選修課,每個(gè)學(xué)生必須選修,且只能從中選一門(mén).該校高一的3名學(xué)生甲、乙、丙對(duì)這4門(mén)不同的選修課的興趣相同.
(1)求3個(gè)學(xué)生選擇了3門(mén)不同的選修課的概率;
(2)求恰有2門(mén)選修課這3個(gè)學(xué)生都沒(méi)有選擇的概率;
(3)設(shè)隨機(jī)變量X為甲、乙、丙這三個(gè)學(xué)生選修數(shù)學(xué)史這門(mén)課的人數(shù),求X的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案