【題目】已知向量 =(1,3), =(3,x).
(1)如果 ,求實(shí)數(shù)x的值;
(2)如果x=﹣1,求向量 的夾角.

【答案】
(1)解:向量 =(1,3), =(3,x),

當(dāng) 時(shí),1×x﹣3×3=0,

解得x=9;


(2)解:當(dāng)x=﹣1時(shí), =(3,﹣1);

所以 =1×3+3×(﹣1)=0,

所以cos< >= =0,

因?yàn)椋? , >∈[0,π],

所以 的夾角為


【解析】(1)根據(jù)兩向量平行的坐標(biāo)關(guān)系,解得x=9,(2)當(dāng)x=1時(shí),根據(jù)向量的數(shù)量積公式可得答案.
【考點(diǎn)精析】本題主要考查了平面向量的坐標(biāo)運(yùn)算的相關(guān)知識(shí)點(diǎn),需要掌握坐標(biāo)運(yùn)算:設(shè),;;設(shè),則才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3)(a>0,且a≠1)
(1)求函數(shù)f(x)的定義域和值域;
(2)若函數(shù) f(x)有最小值為﹣2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70

參考公式:b= =
(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)試預(yù)測(cè)廣告費(fèi)支出為10百萬(wàn)元時(shí),銷售額多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=2x3+3ax2+3bx+8c在x=1及x=2時(shí)取得極值. (Ⅰ)求a、b的值;
(Ⅱ)若對(duì)任意的x∈[0,3],都有f(x)<c2成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)食堂定期從糧店以每噸1500元的價(jià)格購(gòu)買大米,每次購(gòu)進(jìn)大米需支付運(yùn)輸費(fèi) 100元.食堂每天需用大米l噸,貯存大米的費(fèi)用為每噸每天2元(不滿一天按一天計(jì)),假 定食堂每次均在用完大米的當(dāng)天購(gòu)買.
(1)該食堂隔多少天購(gòu)買一次大米,可使每天支付的總費(fèi)用最少?
(2)糧店提出價(jià)格優(yōu)惠條件:一次購(gòu)買量不少于20噸時(shí),大米價(jià)格可享受九五折(即原價(jià)的95%),問(wèn)食堂可否接受此優(yōu)惠條件?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費(fèi)用y(元)有以下統(tǒng)計(jì)資料:

使用年限x

2

3

4

5

6

維修費(fèi)用y

2.2

3.8

5.5

6.5

7.0

參考數(shù)據(jù): , ,
如果由資料知y對(duì)x呈線性相關(guān)關(guān)系.試求:
(1) ;
(2)線性回歸方程 =bx+a.
(3)估計(jì)使用10年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知直二面角α﹣AB﹣β,P∈α,Q∈β,PQ與平面α,β所成的角都為30°,PQ=4,PC⊥AB,C為垂足,QD⊥AB,D為垂足,求:
(1)直線PQ與CD所成角的大小
(2)四面體PCDQ的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017高考特別強(qiáng)調(diào)了要增加對(duì)數(shù)學(xué)文化的考查,為此某校高三年級(jí)特命制了一套與數(shù)學(xué)文化有關(guān)的專題訓(xùn)練卷(文、理科試卷滿分均為100分),并對(duì)整個(gè)高三年級(jí)的學(xué)生進(jìn)行了測(cè)試.現(xiàn)從這些學(xué)生中隨機(jī)抽取了50名學(xué)生的成績(jī),按照成績(jī)?yōu)? , ,…, 分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績(jī)均不低于50分).

(1)求頻率分布直方圖中的 的值,并估計(jì)所抽取的50名學(xué)生成績(jī)的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)若高三年級(jí)共有2000名學(xué)生,試估計(jì)高三學(xué)生中這次測(cè)試成績(jī)不低于70分的人數(shù);
(3)若利用分層抽樣的方法從樣本中成績(jī)不低于70分的三組學(xué)生中抽取6人,再?gòu)倪@6人中隨機(jī)抽取3人參加這次考試的考后分析會(huì),試求后兩組中至少有1人被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,為了得到g(x)=Acosωx的圖象,可以將f(x)的圖象(
A.向左平移 個(gè)單位長(zhǎng)度
B.向左平移 個(gè)單位長(zhǎng)度
C.向右平移 個(gè)單位長(zhǎng)度
D.向右平移 個(gè)單位長(zhǎng)度

查看答案和解析>>

同步練習(xí)冊(cè)答案