精英家教網 > 高中數學 > 題目詳情
精英家教網如圖,在棱長為1的正方體ABCD-A1B1C1D1中,O為正方形ABCD的中心,E、F分別為AB、BC的中點,則異面直線C1O與EF的距離為
 
分析:求異面直線的距離是立體幾何的一個難點,其主要原因是公垂線段較難找,在立體幾何中尋找異面直線的公垂線段一般采用直接法.因為BD⊥平面C1CO,所以BD⊥C1O;又因為AC⊥BD,所以EF⊥BD,則DB即為異面直線C1O與EF的公垂線,故設EF∩DB=G,則OG即為異面直線C1O與EF的距離.
解答:解:設EF∩DB=G
在正方形ABCD中,AC⊥BD
又∵E、F分別為AB、BC的中點,
∴EF∥AC
∴EF⊥BD
∵AC⊥BD,BD⊥C1C,C1C∩AC=C
∴BD⊥平面C1CO
又∵C1O?平面C1CO
∴BD⊥C1O
∴OG即為異面直線C1O與EF的距離,OG=
1
4
BD=
2
4

故答案為:
2
4

精英家教網
點評:本小題考查空間中的線面關系及面面關系,異面直線的距離、解三角形等基礎知識考查空間想象能力和思維能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內,底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當平面OBC繞l順時針旋轉與平面α第一次重合時,求平面OBC轉過角的正弦
值.
(2)在上述旋轉過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年江蘇省南京市金陵中學高三(上)8月月考數學試卷(解析版) 題型:解答題

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數學 來源:2012年安徽省合肥八中高考數學一模試卷(理科)(解析版) 題型:解答題

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內,底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當平面OBC繞l順時針旋轉與平面α第一次重合時,求平面OBC轉過角的正弦
值.
(2)在上述旋轉過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

同步練習冊答案