【題目】如圖,PA、PC切⊙O于A、C,PBD為⊙O的割線.
(1)求證:ADBC=ABDC;
(2)已知PB=2,PA=3,求△ABC與△ACD的面積之比.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點為,離心率為,橢圓與軸與左焦點與點的距離為.
(1)求橢圓方程;
(2)過點的直線與橢圓交于不同的兩點,當(dāng)面積為時,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓+=1的焦點分別是、, 是橢圓上一點,若連結(jié)、、三點恰好能構(gòu)成直角三角形,則點到軸的距離是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)恰有兩個不相同的零點,求實數(shù)的值;
(2)記為函數(shù)的所有零點之和,當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C1: +y2=1,橢圓C2: (a>b>0)的一個焦點坐標(biāo)為( ,0),斜率為1的直線l與橢圓C2相交于A、B兩點,線段AB的中點H的坐標(biāo)為(2,﹣1).
(1)求橢圓C2的方程;
(2)設(shè)P為橢圓C2上一點,點M、N在橢圓C1上,且 ,則直線OM與直線ON的斜率之積是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
(1)若對任意,且,都有,則為R上減函數(shù);
(2) 若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)若一個函數(shù)定義域且的奇函數(shù),當(dāng)時,,則當(dāng)x<0時,其中正確的是____________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐A﹣BCD中,AB、AC、AD兩兩垂直且長度均為10,定長為 的線段MN的一個端點M在棱AB上運(yùn)動,另一個端點N在△ACD內(nèi)運(yùn)動(含邊界),線段MN的中點P的軌跡的面積為2π,則m的值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中有高一新生500名,分成水平相同的兩類教學(xué)實驗,為對比教學(xué)效果,現(xiàn)用分層抽樣的方法從兩類學(xué)生中分別抽取了40人,60人進(jìn)行測試
(1)求該學(xué)校高一新生兩類學(xué)生各多少人?
(2)經(jīng)過測試,得到以下三個數(shù)據(jù)圖表:
圖1:75分以上兩類參加測試學(xué)生成績的莖葉圖
圖2:100名測試學(xué)生成績的頻率分布直方圖
下圖表格:100名學(xué)生成績分布表:
①先填寫頻率分布表中的六個空格,然后將頻率分布直方圖(圖2)補(bǔ)充完整;
②該學(xué)校擬定從參加考試的79分以上(含79分)的類學(xué)生中隨機(jī)抽取2人代表學(xué)校參加市比賽,求抽到的2人分?jǐn)?shù)都在80分以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】工廠需要圍建一個面積為512的矩形堆料場,一邊可以利用原有的墻壁,其他三邊需要砌新的墻壁.我們知道,砌起的新墻的總長度(單位: )是利用原有墻壁長度(單位: )的函數(shù).
(1)寫出關(guān)于的函數(shù)解析式,確定的取值范圍.
(2)堆料場的長、寬之比為多少時,需要砌起的新墻用的材料最?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com