如果對于定義在R上的函數(shù)f(x),其圖象是連續(xù)不斷的,而且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf (x)=0對任意實數(shù)x都成立,則稱f(x) 是一個“λ-伴隨函數(shù)”.有下列關(guān)于“λ-伴隨函數(shù)”的結(jié)論:①f(x)=0 是常數(shù)函數(shù)中唯一個“λ-伴隨函數(shù)”;②f(x)=x2是一個“λ-伴隨函數(shù)”;③“
1
2
-伴隨函數(shù)”至少有一個零點.其中不正確的序號是( 。
分析:根據(jù)“λ-伴隨函數(shù)”的定義,可得f(x)=C(C是常數(shù))必定是“λ-伴隨函數(shù)”,f(x)=0不是唯一一個,故①不正確;
假設(shè)f(x)=x2是一個“λ-伴隨函數(shù)”,得(1+λ)x2+2λx+λ2=0對任意實數(shù)x成立,而找不到λ使上式成立,故f(x)=x2不是一個“λ-伴隨函數(shù)”,②不正確;根據(jù)“λ-伴隨函數(shù)”的定義,結(jié)合函數(shù)零點存在性定理,可證出“
1
2
-伴隨函數(shù)”至少有一個零點,得③正確.由此可得正確答案.
解答:解:對于①,設(shè)f(x)=C(C是常數(shù))是一個“λ-伴隨函數(shù)”,則f(x+λ)+λf (x)=(1+λ)C=0,
當λ=-1時,C可以取遍實數(shù)集,因此f(x)=C(C是常數(shù))必定是“λ-伴隨函數(shù)”,
可得f(x)=0 不是常數(shù)函數(shù)中唯一個“λ-伴隨函數(shù)”,故①不正確;
對于②,假設(shè)f(x)=x2是一個“λ-伴隨函數(shù)”,則f(x+λ)+λf (x)=(x+λ)2+λx2=0,
即(1+λ)x2+2λx+λ2=0對任意實數(shù)x成立,所以λ+1=2λ=λ2=0,而找不到λ使此式成立,
所以f(x)=x2不是一個“λ-伴隨函數(shù)”,故②不正確.
對于③,令x=0,得f(0+
1
2
)+
1
2
f(0)=0,所以f(
1
2
)=-
1
2
f(0).
當f(0)=0時,顯然f(x)=0有實數(shù)根;
當f(0)≠0時,f(
1
2
)•f(0)=-[
1
2
f(0)]2<0.因為函數(shù)f(x)函數(shù)圖象是連續(xù)不斷的,
所以f(x)在(0,
1
2
)上必有實數(shù)根,
綜上所述,因此“
1
2
-伴隨函數(shù)”至少有一個零點.故③正確.
故答案為:A
點評:本題給出抽象函數(shù),叫我們找出三個命題中的假命題,著重考查了基本初等函數(shù)的圖象與性質(zhì),函數(shù)零點存在性定理等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:福建省泉州一中2012屆高三5月模擬考試數(shù)學(xué)文科試題 題型:013

如果對于定義在R上的函數(shù)f(x),其圖象是連續(xù)不斷的,而且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對任意實數(shù)x都成立,則稱f(x)是一個“λ-伴隨函數(shù)”.有下列關(guān)于“λ-伴隨函數(shù)”的結(jié)論:

①f(x)=0是常數(shù)函數(shù)中唯一個“λ-伴隨函數(shù)”;

②f(x)=x2是一個“λ-伴隨函數(shù)”;

③“-伴隨函數(shù)”至少有一個零點.

其中不正確的序號是

[  ]

A.①②

B.②③

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如果對于定義在R上的函數(shù)f(x),其圖象是連續(xù)不斷的,而且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf (x)=0對任意實數(shù)x都成立,則稱f(x) 是一個“λ-伴隨函數(shù)”.有下列關(guān)于“λ-伴隨函數(shù)”的結(jié)論:①f(x)=0 是常數(shù)函數(shù)中唯一個“λ-伴隨函數(shù)”;②f(x)=x2是一個“λ-伴隨函數(shù)”;③“數(shù)學(xué)公式-伴隨函數(shù)”至少有一個零點.其中不正確的序號是


  1. A.
    ①②
  2. B.
    ②③
  3. C.
  4. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果對于定義在R上的函數(shù)f(x),其圖象是連續(xù)不斷的,而且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf (x)=0對任意實數(shù)x都成立,則稱f(x) 是一個“λ-伴隨函數(shù)”.有下列關(guān)于“λ-伴隨函數(shù)”的結(jié)論:①f(x)=0 是常數(shù)函數(shù)中唯一個“λ-伴隨函數(shù)”;②f(x)=x2是一個“λ-伴隨函數(shù)”;③“
1
2
-伴隨函數(shù)”至少有一個零點.其中不正確的序號是( 。
A.①②B.②③C.③D.①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省泉州一中高三(下)5月模擬數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

如果對于定義在R上的函數(shù)f(x),其圖象是連續(xù)不斷的,而且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf (x)=0對任意實數(shù)x都成立,則稱f(x) 是一個“λ-伴隨函數(shù)”.有下列關(guān)于“λ-伴隨函數(shù)”的結(jié)論:①f(x)=0 是常數(shù)函數(shù)中唯一個“λ-伴隨函數(shù)”;②f(x)=x2是一個“λ-伴隨函數(shù)”;③“-伴隨函數(shù)”至少有一個零點.其中不正確的序號是( )
A.①②
B.②③
C.③
D.①

查看答案和解析>>

同步練習(xí)冊答案