【題目】已知函數(shù)f(x)=|x+a|+|x+ |(a>0,m∈R,m≠0).
(1)當(dāng)a=2時(shí),求不等式f(x)>3的解集;
(2)證明:

【答案】
(1)解:當(dāng)a=2時(shí),不等式f(x)>3即為|x+2|+|x+ |>3.

當(dāng)x<﹣2時(shí),不等式為: ,解得 ;

當(dāng) 時(shí),不等式為: ,無解;

當(dāng) 時(shí),不等式為: ,解得

綜上,不等式f(x)>3的解集為


(2)證明:f(m)+f(﹣ )=|m+a|+|m+ |+|﹣ |+|﹣ + |

≥|m+a+m+ + ﹣a+ |=2|m+ |,

∵|m+ |=|m|+| |≥2,

∴2|m+ |≥4,

即f(m)+f(﹣ )≥4.


【解析】(1)討論x的范圍,去絕對(duì)值符號(hào)化簡(jiǎn)不等式解出;(2)利用絕對(duì)值三角不等式證明.
【考點(diǎn)精析】本題主要考查了絕對(duì)值不等式的解法和不等式的證明的相關(guān)知識(shí)點(diǎn),需要掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào);不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xex+ax2+2x+1在x=﹣1處取得極值.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)﹣m﹣1在[﹣2,2]上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三角形ABC的邊長(zhǎng)為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為 ,此時(shí)四面體ABCD外接球表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l在直角坐標(biāo)系xOy中的參數(shù)方程為 為參數(shù),θ為傾斜角),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,在極坐標(biāo)系中,曲線的方程為ρ﹣ρcos2θ﹣4cosθ=0.
(1)寫出曲線C的直角坐標(biāo)方程;
(2)點(diǎn)Q(a,0),若直線l與曲線C交于A、B兩點(diǎn),求使 為定值的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中點(diǎn),面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy 中,F(xiàn),A,B 分別為橢圓 的右焦點(diǎn)、右頂點(diǎn)和上頂點(diǎn),若
(1)求a的值;
(2)過點(diǎn)P(0,2)作直線l 交橢圓于M,N 兩點(diǎn),過M 作平行于x 軸的直線交橢圓于另外一點(diǎn)Q,連接NQ ,求證:直線NQ 經(jīng)過一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在自然數(shù)列1,2,3,,n中,任取k個(gè)元素位置保持不動(dòng),將其余n﹣k個(gè)元素變動(dòng)位置,得到不同的新數(shù)列.由此產(chǎn)生的不同新數(shù)列的個(gè)數(shù)記為Pn(k).
(1)求P3(1)
(2)求 P4(k);
(3)證明 kPn(k)=n Pn1(k),并求出 kPn(k)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=|x|﹣ (a∈R)的圖象不可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 + =1的左焦點(diǎn)為F,直線x=a與橢圓相交于點(diǎn)M、N,當(dāng)△FMN的周長(zhǎng)最大時(shí),△FMN的面積是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案