直線
3
x-y+2=0與圓x2+y2=2的交點(diǎn)個(gè)數(shù)有(  )個(gè).
A.0B.1C.2D.不能斷定
由圓的方程得:圓心坐標(biāo)為(0,0),半徑r=
2
,
∵圓心到直線
3
x-y+2=0的距離d=
2
2
=1,即d<r,
∴直線與圓相交,即交點(diǎn)個(gè)數(shù)為2個(gè).
故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓A:(x-2)2+y2=1,曲線B:6-x=
4-y2
和直線l:y=x.
(1)若點(diǎn)M、N、P分別是圓A、曲線B和直線l上的任意點(diǎn),求|PM|+|PN|的最小值;
(2)已知?jiǎng)又本m:(a-2)x+by-2a+3=0(a,b∈R)與圓A相交于S、T兩點(diǎn),又點(diǎn)Q的坐標(biāo)是(a,b).
①判斷點(diǎn)Q與圓A的位置關(guān)系;
②求證:當(dāng)實(shí)數(shù)a,b的值發(fā)生變化時(shí),經(jīng)過S、T、Q三點(diǎn)的圓總過定點(diǎn),并求出這個(gè)定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:x2+y2+2x-4y+3=0
(1)若圓Q的圓心在直線y=x+3上,半徑為
2
,且與圓C外切,求圓Q的方程;
(2)若圓C的切線在x軸,y軸上的截距相等,求此切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙C1:x2+(y+5)2=5,點(diǎn)A(1,-3)
(Ⅰ)求過點(diǎn)A與⊙C1相切的直線l的方程;
(Ⅱ)設(shè)⊙C2為⊙C1關(guān)于直線l對(duì)稱的圓,則在x軸上是否存在點(diǎn)P,使得P到兩圓的切線長之比為
2
?薦存在,求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l過點(diǎn)P(0,2),斜率為k,圓Q:x2+y2-12x+32=0,若直線l和圓Q交于兩個(gè)不同的點(diǎn)A,B,問是否存在常數(shù)k,使得
OA
+
OB
PQ
共線?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,若△ABC的三邊長分別為|a|,|b|,|c|,則該三角形為______(判斷三角形的形狀).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)P(2,0),及⊙C:x2+y2-6x+4y+4=0.
(1)當(dāng)直線l1過點(diǎn)P且與⊙C的圓心的距離為1時(shí),求直線l1的方程;
(2)設(shè)l2:x+y-2=0交⊙C于A、B兩點(diǎn),求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知實(shí)數(shù)r是常數(shù),如果M(x0,y0)是圓x2+y2=r2外的一點(diǎn),那么直線x0x+y0y=r2與圓x2+y2=r2的位置關(guān)系是(  )
A.相交B.相切C.相離D.都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)m,n∈R,若直線l:mx+ny-1=0與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,且l與圓x2+y2=4相交所得弦的長為2,O為坐標(biāo)原點(diǎn),則△AOB面積的最小值為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案