原點(diǎn)和點(diǎn)(1,1)在直線x+y-a=0兩側(cè),則a的取值范圍是( 。
A.0≤a≤2B.0<a<2C.a(chǎn)=0或a=2D.a(chǎn)<0或a>2
∵原點(diǎn)和點(diǎn)(1,1)在直線x+y-a=0兩側(cè),
∴(0+0-a)(1+1-a)<0,
即a(a-2)<0,
解得0<a<2,
故選:B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某車間小組共12人,需配置兩種型號(hào)的機(jī)器,A型機(jī)器需2人操作,每天耗電30KW•h,能生產(chǎn)出價(jià)值4萬元的產(chǎn)品;B型機(jī)器需3人操作,每天耗電20KW•h,能生產(chǎn)出價(jià)值3萬元的產(chǎn)品現(xiàn)每天供應(yīng)車間的電能不多于130KW•h,問該車間小組應(yīng)如何配置兩種型號(hào)的機(jī)器,才能使每天的產(chǎn)值最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)實(shí)數(shù)x、y滿足
x≥0
x-2y≥0
x-y-2≤0
,則2x+y的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知不等式組
3
x≥y≥0
x+ay≤2
(a>0)表示的平面區(qū)域的面積為
3
2
,則a=( 。
A.
3
B.3C.
2
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三角形的三邊分別為x,y與2,請(qǐng)?jiān)谥苯亲鴺?biāo)系內(nèi)用平面區(qū)域表示點(diǎn)P(x,y)的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

不等式x-(m2-2m+4)y-6>0表示的平面區(qū)域是以直x-(m2-2m+4)y-6=0為界的兩個(gè)平面區(qū)域中的一個(gè),且點(diǎn)(-1,-1)不在這個(gè)區(qū)域中,則實(shí)數(shù)m的取值范圍是( 。
A.(-1,3)B.(-∞,-1)∪(3,+∞)C.[-1,3]D.(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知變量x,y滿足約束條件
x+y≤1
x-y≤1
x+1≥0
,則z=x+2y的最小值為( 。
A.3B.1C.-5D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)不等式組
x-2y+2≥0
x≤4
y≥-2
表示的平面區(qū)域?yàn)镈.在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到直線y+2=0的距離大于2的概率是(  )
A.
4
13
B.
5
13
C.
8
25
D.
9
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知實(shí)數(shù)x,y滿足不等式組
y≤x
x+2y≤4
y≥
1
2
x+m
且z=x2+y2+2x-2y+2的最小值為2.則實(shí)數(shù)m的取值范圍為( 。
A.(-∞,0)B.(-∞,0]C.(-∞,
4
3
]
D.(0,
4
3
]

查看答案和解析>>

同步練習(xí)冊(cè)答案