【題目】某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表

商店名稱

A

B

C

D

E

銷售額x(千萬元)

3

5

6

7

9

利潤額y(百萬元)

2

3

3

4

5


(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)性.
(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.
(3)當(dāng)銷售額為4(千萬元)時,估計利潤額的大。

【答案】
(1)解:根據(jù)所給的五組數(shù)據(jù),得到五個有序數(shù)對,在平面直角坐標(biāo)系中畫出點,得到散點圖.

散點圖


(2)解:設(shè)回歸直線的方程是: ;

=

a=0.4

∴y對銷售額x的回歸直線方程為:y=0.5x+0.4


(3)解:當(dāng)銷售額為4(千萬元)時,利潤額為: =2.4(百萬元)
【解析】(1)畫出散點圖如圖;(2)先求出x,y的均值,再由公式 = , = 計算出系數(shù)的值,即可求出線性回歸方程;(3)將零售店某月銷售額為4千萬元代入線性回歸方程,計算出y的值,即為此月份該零售點的估計值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列{an}的前n項和為Sn , 點(an , Sn)(n∈N*)都在函數(shù)f(x)= 的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an3n , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,點D是AB的中點.求證:
(1)AC⊥BC1;
(2)AC1∥平面B1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象過原點,且在處取得極值,直線與曲線在原點處的切線互相垂直.

求函數(shù)的解析式;

若對任意實數(shù)的,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線C:x2=2py(p>0),其焦點為F,C上的一點M(4,m)滿足|MF|=4.

(1)求拋物線C的標(biāo)準(zhǔn)方程;

(2)過點E(﹣1,0)作不經(jīng)過原點的兩條直線EA,EB分別與拋物線C和圓F:x2+(y﹣2)2=4相切于點A,B,試判斷直線AB是否經(jīng)過焦點F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式ax2+bx﹣1<0的解集為{x|﹣1<x<2}.
(1)計算a、b的值;
(2)求解不等式x2﹣ax+b>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為3的正方形所在平面與等腰直角三角形所在平面互相垂直, ,且, .

Ⅰ)求證: 平面;

Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(l)求的單調(diào)區(qū)間;

(2)若函數(shù)在區(qū)間內(nèi)存在唯一的極值點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中, 是邊長為4的正方形.平面⊥平面, .

(1)求證: ⊥平面ABC;

(2)求二面角的余弦值;

(3)證明:在線段存在點,使得,并求的值.

查看答案和解析>>

同步練習(xí)冊答案