函數(shù)上是增函數(shù),,則的取值范圍是(   )
A.B.
C.D.
C

試題分析:∵,∴,又函數(shù)上是增函數(shù),∴,∴,∴,即的取值范圍是
點(diǎn)評(píng):對(duì)于抽象函數(shù)不等式的解法往往利用單調(diào)性轉(zhuǎn)化為常見不等式的解法
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),其中e是自然數(shù)的底數(shù),
(1)當(dāng)時(shí),解不等式
(2)當(dāng)時(shí),求正整數(shù)k的值,使方程在[k,k+1]上有解;
(3)若在[-1,1]上是單調(diào)增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)定義在上的函數(shù),,當(dāng)時(shí),.且對(duì)任意的。
(1)證明:
(2)證明:對(duì)任意的,恒有
(3)證明:上的增函數(shù);
(4)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)為實(shí)數(shù),且
(1)求方程的解;
(2)若,滿足,試寫出的等量關(guān)系(至少寫出兩個(gè));
(3)在(2)的基礎(chǔ)上,證明在這一關(guān)系中存在滿足.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知上是減函數(shù),則滿足的實(shí)數(shù)的取值范圍是(     ).
A.(-∞,1)B.(2,+∞)
C.(-∞,1)∪(2,+∞) D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某商場(chǎng)對(duì)顧客實(shí)行購物優(yōu)惠活動(dòng),規(guī)定一次購物付款總額,
①如果不超過200元,則不予優(yōu)惠,
②如果超過200元,但不超過500元,則按標(biāo)準(zhǔn)價(jià)給予9折優(yōu)惠,
③如果超過500元,則其500元按第②條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠;
某人兩次去購物,分別付款168元和423元,假設(shè)他只去一次購買上述同樣的商品,則應(yīng)付款是         元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)若對(duì)定義域內(nèi)任意,都有成立,求實(shí)數(shù)的值;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求的范圍;
(3)若,證明對(duì)任意正整數(shù),不等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003813526293.png" style="vertical-align:middle;" />的函數(shù),若存在非零實(shí)數(shù),使函數(shù)上均有零點(diǎn),則稱為函數(shù)的一個(gè)“界點(diǎn)”.則下列四個(gè)函數(shù)中,不存在“界點(diǎn)”的是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,則                     ;

查看答案和解析>>

同步練習(xí)冊(cè)答案