【題目】已知函數(shù).
(1)當(dāng)時,直線與相切,求的值;
(2)若函數(shù)在內(nèi)有且只有一個零點,求此時函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時,若函數(shù)在上的最大值和最小值的和為1,求實數(shù)的值.
【答案】(1); (2)單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為; (3).
【解析】
(1)由求出切點坐標(biāo),代入切線方程即可得結(jié)果;(2)先證明當(dāng)時不合題意,當(dāng)時,根據(jù)單調(diào)性可得,要使函數(shù)在內(nèi)有且只有一個零點,則須,求得,進而可得結(jié)果;(3)當(dāng)時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,極大值為,極小值為,且,,分類討論求出最大值與最小值,解方程即可得結(jié)果.
.
(1),
則,所以,,
當(dāng),所以,解得.
(2),
由,得到,,
當(dāng)時,在區(qū)間上恒成立,
即函數(shù)在區(qū)間上單調(diào)遞增,
又因為函數(shù)的圖象過點,即,
所以函數(shù)在內(nèi)沒有零點,不合題意,
當(dāng)時,由得,即函數(shù)在區(qū)間上單調(diào)遞增,
由得,即函數(shù)在區(qū)間在上單調(diào)遞減,
且過點,要使函數(shù)在內(nèi)有且只有一個零點,則須,
即,解得,
綜上可得函數(shù)在內(nèi)有且只有一個零點時,
此時函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.
(3)當(dāng)時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,
此時函數(shù)有兩個極值點,極大值為,極小值為,
且,.
①當(dāng)即時,在上單調(diào)遞增,在上單調(diào)遞減,,
又即
所以,解得(舍).
②當(dāng)即時,在上單調(diào)遞增,在上單調(diào)遞減,
在上單調(diào)遞增 即,所以.
若,即時,,所以,
解得(舍).
若,即時,,所以,
解得.
綜上,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線過點,其參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線與相交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點任作一直線交拋物線于兩點,過兩點分別作拋物線的切線.
(Ⅰ)記的交點的軌跡為,求的方程;
(Ⅱ)設(shè)與直線交于點(異于點),且,.問是否為定值?若為定值,請求出定值.若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為建立健全國家學(xué)生體質(zhì)健康監(jiān)測評價機制,激勵學(xué)生積極參加身體鍛煉,教育部印發(fā)《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)(2014年修訂)》,要求各學(xué)校每學(xué)期開展覆蓋本校各年級學(xué)生的《標(biāo)準(zhǔn)》測試工作,并根據(jù)學(xué)生每個學(xué)期總分評定等級.某校決定針對高中學(xué)生,每學(xué)期進行一次體質(zhì)健康測試,以下是小明同學(xué)六個學(xué)期體質(zhì)健康測試的總分情況.
學(xué)期 | 1 | 2 | 3 | 4 | 5 | 6 |
總分(分) | 512 | 518 | 523 | 528 | 534 | 535 |
(1)請根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說明與的線性相關(guān)程度,并用最小二乘法求出關(guān)于的線性回歸方程(線性相關(guān)系數(shù)保留兩位小數(shù));
(2)在第六個學(xué)期測試中學(xué)校根據(jù) 《標(biāo)準(zhǔn)》,劃定540分以上為優(yōu)秀等級,已知小明所在的學(xué)習(xí)小組10個同學(xué)有6個被評定為優(yōu)秀,測試后同學(xué)們都知道了自己的總分但不知道別人的總分,小明隨機的給小組內(nèi)4個同學(xué)打電話詢問對方成績,優(yōu)秀的同學(xué)有人,求的分布列和期望.
參考公式: ,;
相關(guān)系數(shù);
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在與時都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間;
(2)若對,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=,其中2<m<2,m∈Z,滿足:
(1)f(x)是區(qū)間(0,+∞)上的增函數(shù);
(2)對任意的x∈R,都有f(x) +f(x)=0.
求同時滿足條件(1)、(2)的冪函數(shù)f(x)的解析式,并求x∈[0,3]時,f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,規(guī)定當(dāng)一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低元,根據(jù)市場調(diào)查,銷售商一次訂購不會超過600件.
(1)設(shè)一次訂購件,服裝的實際出廠單價為元,寫出函數(shù)的表達式;
(2)當(dāng)銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校進行課題實驗,乙班為實驗班,甲班為對比班,甲乙兩班均有50人,一年后對兩班進行測試,成績?nèi)缦卤?/span>
甲班成績 |
| ||||
人數(shù) | 4 | 20 | 15 | 10 | 1 |
乙班成績 | |||||
人數(shù) | 1 | 11 | 23 | 13 | 2 |
(1)現(xiàn)從甲班成績位于內(nèi)的試卷中抽取9份進行試卷分析,請問用什么抽樣方法更合理,并寫出最后的抽樣結(jié)果
(2)完成下列列聯(lián)表,并判斷有多大把握認(rèn)為這兩個班在這次測試中成績的差異與實施課題實驗有關(guān)。
成績小于100 | 成績不小于100 | 合計 | |
甲班 | 50 | ||
乙班 | 50 | ||
合計 | 36 | 64 | 100 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com