過(guò)雙曲線)的右焦點(diǎn)作圓的切線,交軸于點(diǎn),切圓于點(diǎn),若,則雙曲線的離心率是(   )
A.B.C.D.
D

試題分析:如圖,由(平行四邊形法則)知,點(diǎn)M是的中點(diǎn),因?yàn)辄c(diǎn)為切點(diǎn),所以,則,所以,由得,,所以。故選D。

點(diǎn)評(píng):解決平面幾何的題目,首先是畫圖。當(dāng)題目出現(xiàn)曲線的方程時(shí),假如不是標(biāo)準(zhǔn)形式,則需要將其變成標(biāo)準(zhǔn)形式。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓過(guò)點(diǎn),其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與軸正半軸、軸分別交于點(diǎn),與橢圓分別交于點(diǎn),各點(diǎn)均不重合,且滿足. 當(dāng)時(shí),試證明直線過(guò)定點(diǎn).過(guò)定點(diǎn)(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在坐標(biāo)原點(diǎn)焦點(diǎn)在軸上的橢圓C,其長(zhǎng)軸長(zhǎng)等于4,離心率為
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)(0,1), 問(wèn)是否存在直線與橢圓交于兩點(diǎn),且?若存在,求出的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線的極坐標(biāo)方程為
(1)求的直角坐標(biāo)方程;
(2)直線為參數(shù))與曲線C交于,兩點(diǎn),與軸交于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的左右焦點(diǎn)分別是,設(shè)是雙曲線右支上一點(diǎn),上投影的大小恰好為,且它們的夾角為,則雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動(dòng)點(diǎn),又點(diǎn)的最小值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)分別是橢圓的左,右焦點(diǎn)。
(Ⅰ)若是第一象限內(nèi)該橢圓上的一點(diǎn),且,求點(diǎn)的坐標(biāo)。
(Ⅱ)設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中O為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是過(guò)拋物線焦點(diǎn)的弦,,則中點(diǎn)的橫坐標(biāo)是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知過(guò)拋物線y2 =2px(p>0)的焦點(diǎn)F的直線x-my+m=0與拋物線交于A,B兩點(diǎn),且△OAB(O為坐標(biāo)原點(diǎn))的面積為2,則m6+ m4的值為(   )
A.1B. 2 C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案