(本小題滿分12分)
如圖, 在直三棱柱ABC-A
1B
1C
1中,AC=3,BC=4,
,AA
1=4,點(diǎn)D是AB的中點(diǎn).
(Ⅰ)求證:AC⊥BC
1;
(Ⅱ)求二面角
的平面角的正切值.
(Ⅰ)略
(Ⅱ)二面角
的正切值為
(Ⅰ)證明:直三棱柱ABC-A
1B
1C
1,底面三邊長AC=3,BC=4,AB=5,
∴ AC⊥BC, …………………2分
又 AC⊥
,且
∴ AC⊥平面BCC
1,又
平面BCC
1 ……………………………………4分
∴ AC⊥BC
1 ………………………………………………………………5分
(Ⅱ)解法一:取
中點(diǎn)
,過
作
于
,連接
…………6分
是
中點(diǎn),
∴
,又
平面
∴
平面
,
又
平面
,
平面
∴
∴
又
且
∴
平面
,
平面
………8分
∴
又
∴
是二面角
的平面角 ……………………………………10分
AC=3,BC=4,AA
1=4,
∴在
中,
,
,
∴
…………………………………………11分
∴二面角
的正切值為
…………………………………………12分
解法二:以
分別為
軸建立如圖所示空間直角坐標(biāo)系…………6分
AC=3,BC=4,AA
1=4,
∴
,
,
,
,
∴
,
平面
的法向量
, …………………8分
設(shè)平面
的法向量
,
則
,
的夾角(或其補(bǔ)角)的大小就是二面角
的大小 …………9分
則由
令
,則
,
∴
………………10分
,則
……………11分
∵二面角
是銳二面角
∴二面角
的正切值為
………………………… 12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)如圖,在底面為直角梯形的四棱錐
中,
,
平面
.PA=4,AD=2,AB=
,BC=6
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角D—PC—A的大。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),
(I)求證:
平面BCD;
(II)求點(diǎn)E到平面ACD的距離 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題共12分)
如圖,在正三棱柱ABC—A
1B
1C
1中,點(diǎn)D是棱AB的中點(diǎn),BC=1,AA
1=
(1)求證:BC
1//平面A
1DC;
(2)求二面角D—A
1C—A的大小
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,已知三棱錐
P—
ABC中,
PA⊥平面
ABC,
AB⊥
AC,
PA=
AC=
AB,
N為
AB上一點(diǎn),
AB=4
AN,
M,
S分別為
PB,
BC的中點(diǎn).
(I)證明:
CM⊥
SN;
(II)求
SN與平面
CMN所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)如圖,四棱錐
P-ABCD是底面邊長為1的正方形,PD⊥BC,PD=1,PC=
.
(Ⅰ)求證:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知在四棱錐
P-
ABCD中,底面
ABCD是邊長為4的正方形,△
PAD是正三角形,平面
PAD⊥平面
ABCD,
E、
F、
G分別是
PA、
PB、
BC的中點(diǎn).
(I)求證:
EF平面
PAD;
(II)求平面
EFG與平面
ABCD所成銳二面角的大。
(III)若
M為線段
AB上靠近
A的一個(gè)動點(diǎn),問當(dāng)
AM長度等于多少時(shí),直線
MF與平面
EFG所成角的正弦值等于
?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
如圖, 在直三棱柱ABC-A
1B
1C
1中,AC=3,BC=4,AA
1=4,AB=5,點(diǎn)D是AB的中點(diǎn),
(I) 求證:AC⊥BC
1;(II)求證:AC
1//平面CDB
1;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,正三棱柱
的所有棱長都為
,
為
中點(diǎn).
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的大;
(Ⅲ)求點(diǎn)
到平面
的距離.
查看答案和解析>>