【題目】在面積為的邊上任取一點(diǎn),則的面積大于的概率是( )

A. B. C. D.

【答案】C

【解析】設(shè)事件A={ 的面積大于},基本事件是線段AB的長(zhǎng)度,如圖所示,因?yàn)?/span>的面積大于,則有, ,則由三角形的相似得, 事件A的幾何度量為線段AP的長(zhǎng)度,故的面積大于的概率是,故選C.

點(diǎn)睛:(1)當(dāng)試驗(yàn)的結(jié)果構(gòu)成的區(qū)域?yàn)殚L(zhǎng)度、面積、體積等時(shí),應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時(shí),關(guān)鍵是試驗(yàn)的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時(shí)需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域.(3)幾何概型有兩個(gè)特點(diǎn):一是無(wú)限性,二是等可能性.基本事件可以抽象為點(diǎn),盡管這些點(diǎn)是無(wú)限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用“比例解法”求解幾何概型的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 的定義域?yàn)榧螦,B={x∈Z|2<x<10},C={x∈R|x<a或x>a+1}
(1)求A,(RA)∩B;
(2)若A∪C=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某舉重運(yùn)動(dòng)隊(duì)為了解隊(duì)員的體重分布情況,從50名隊(duì)員中抽取10名作調(diào)查.抽取時(shí)現(xiàn)將全體隊(duì)員隨機(jī)按1~50編號(hào),并按編號(hào)順序平均分成10組,每組抽一名,且各組內(nèi)抽取的編號(hào)依次增加5進(jìn)行系統(tǒng)抽樣.

(1)若第5組抽出的號(hào)碼為22,寫(xiě)出所有被抽取出來(lái)的編號(hào);

(2)分別統(tǒng)計(jì)被抽取的10名隊(duì)員的體重(單位:公斤),獲得如圖所示的體重?cái)?shù)據(jù)的莖葉圖,根據(jù)莖葉圖求該樣本的平均數(shù)和中位數(shù);

(3)在題(2)的莖葉圖中,從題中不輕于73公斤的隊(duì)員中隨機(jī)抽取2名隊(duì)員的體重?cái)?shù)據(jù),求體重為81公斤的隊(duì)員被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為: .

(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;

(Ⅱ)過(guò)點(diǎn)且與直線平行的直線, 兩點(diǎn),求點(diǎn), 兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若直線是函數(shù)圖象的一條切線,求實(shí)數(shù)的值;

(2)若函數(shù)上的最大值為為自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的值;

(3)若關(guān)于的方程有且僅有唯一的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,順次連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為16.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)橢圓的頂點(diǎn)的直線交橢圓于另一點(diǎn),交軸于點(diǎn),若、成等比數(shù)列,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中, , 為邊的中點(diǎn),將沿直線翻轉(zhuǎn)成.若為線段的中點(diǎn),則在翻折過(guò)程中:

是定值;②點(diǎn)在某個(gè)球面上運(yùn)動(dòng);

③存在某個(gè)位置,使;④存在某個(gè)位置,使平面.

其中正確的命題是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對(duì)任意實(shí)數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)t∈[﹣1,3]時(shí),求y=f(2t)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案