設(shè)是定義在[-1,1]上的偶函數(shù),的圖象與的圖象關(guān)于直線對(duì)稱,且當(dāng)x∈[ 2,3 ] 時(shí),.
(1)求的解析式;
(2)若在上為增函數(shù),求的取值范圍;
(3)是否存在正整數(shù),使的圖象的最高點(diǎn)落在直線上?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
(1)∴
(2)a>(6x2)max=6.
(3)證明見解析。
(1)當(dāng)x∈[-1,0]時(shí),2-x∈[2,3],f(x)=g(2-x)= -2ax+4x3;當(dāng)x∈時(shí),f(x)=f(-x)=2ax-4x3,
∴………………………………………4分
(2)由題設(shè)知,>0對(duì)x∈恒成立,即2a-12x2>0對(duì)x∈恒成立,于是,a>6x2,從而a>(6x2)max=6.………………………8分
(3)因f(x)為偶函數(shù),故只需研究函數(shù)f(x)=2ax-4x3在x∈的最大值.
令=2a-12x2=0,得.…10分 若∈,即0<a≤6,則
,
故此時(shí)不存在符合題意的;
若>1,即a>6,則在上為增函數(shù),于是.
令2a-4=12,故a=8. 綜上,存在a = 8滿足題設(shè).………………13分
評(píng)析:本題通過(guò)函數(shù)的知識(shí)來(lái)切入到導(dǎo)數(shù),是在這兩個(gè)重要知識(shí)的交匯處命題,意在考查學(xué)生的邏輯思維能力與推理能力,函數(shù)及導(dǎo)數(shù)的應(yīng)用是數(shù)學(xué)的難點(diǎn),也是考得最熱的話題之一,也是本套試卷的把關(guān)題,對(duì)學(xué)生的要求較高.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年遼寧省瓦房店市高二4月月考數(shù)學(xué)理卷 題型:選擇題
設(shè)是定義在R上的偶函數(shù),當(dāng)時(shí),,且,則不等式的解集為( )
A.(-1,0)∪(1,+) B.(-1,0)∪(0,1)
C.(-,-1)∪(1,+) D.(-,-1)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆福建省高二上學(xué)期期末考試文科數(shù)學(xué)試卷 題型:選擇題
設(shè)是定義在R上的偶函數(shù),當(dāng)時(shí),,且,則不等式的解集為( )
A.(-1,0)∪(1,+) B.(-1,0)∪(0,1)
C.(-,-1)∪(1,+) D.(-,-1)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com