【題目】已知函數(shù)f(x)=asinx﹣ cosx(a∈R)的圖象經(jīng)過點( ,0).
(1)求f(x)的最小正周期;
(2)若x∈[ ],求f(x)的取值范圍.

【答案】
(1)解:因為函數(shù) 的圖象經(jīng)過點 ,

所以 ,

解得 a=1;

所以

所以f(x)最小正周期為T=2π;


(2)解:因為 ,所以 ;

所以當 ,即 時,f(x)取得最大值,最大值是2;

,即 時,f(x)取得最小值,最小值是﹣1;

所以f(x)的取值范圍是[﹣1,2]


【解析】(1)根據(jù)函數(shù)f(x)的圖象過點 ,代入函數(shù)解析式求出a的值,從而寫出函數(shù)解析式并求出最小正周期;(2)根據(jù)x的取值范圍,計算f(x)的最值,從而求出它的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C1的參數(shù)方程為 (θ為參數(shù)),曲線 C2的極坐標方程為ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲線C1的普通方程和曲線 C2的直角坐標方程;
(2)設P為曲線C1上一點,Q為曲線 C2上一點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn滿足bn+1﹣bn=an , 且b2=﹣18,b3=﹣24.
(1)求數(shù)列{an}的通項公式;
(2)求bn取得最小值時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,F(xiàn)為橢圓E:的右焦點,過F作兩條相互垂直的直線AB,CD,與橢圓E分別交于A,B和點C,D.

(1)當AB=時,求直線AB的方程;

(2)直線AB交直線x=3于點M,OM與CD交于P,CO與橢圓E交于Q,求證:OM∥DQ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右頂點是雙曲線的頂點,且橢圓的上頂點到雙曲線的漸近線的距離為.

(1)求橢圓的方程;

(2)若直線相交于兩點,與相交于兩點,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為為坐標原點,是拋物線上異于的兩點.

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣ax+cosx(a∈R),x∈[﹣ , ].
(1)若函數(shù)f(x)是偶函數(shù),試求a的值;
(2)當a>0時,求證:函數(shù)f(x)在(0, )上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2+
(I) 當a= 時,判斷f(x)在其定義上的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 其中x1<x2 . 求證:
(i)f(x2)>0;
(ii)x1+x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校在高二年級實行選課走班教學,學校為學生提供了多種課程,其中數(shù)學科提供5種不同層次的課程,分別稱為數(shù)學1、數(shù)學2、數(shù)學3、數(shù)學4、數(shù)學5,每個學生只能從這5種數(shù)學課程中選擇一種學習,該校高二年級1800名學生的數(shù)學選課人數(shù)統(tǒng)計如表:

課程

數(shù)學1

數(shù)學2

數(shù)學3

數(shù)學4

數(shù)學5

合計

選課人數(shù)

180

540

540

360

180

1800

為了了解數(shù)學成績與學生選課情況之間的關(guān)系,用分層抽樣的方法從這1800名學生中抽取了10人進行分析.
(1)從選出的10名學生中隨機抽取3人,求這3人中至少有2人選擇數(shù)學2的概率;
(2)從選出的10名學生中隨機抽取3人,記這3人中選擇數(shù)學2的人數(shù)為X,選擇數(shù)學1的人數(shù)為Y,設隨機變量ξ=X﹣Y,求隨機變量ξ的分布列和數(shù)學期望E(ξ).

查看答案和解析>>

同步練習冊答案