【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),居民用水原則上以住宅為單位(一套住宅為一戶).
階梯級(jí)別 | 第一階梯 | 第二階梯 | 第三階梯 |
月用水范圍(噸) |
為了了解全市居民月用水量的分布情況,通過(guò)抽樣,獲得了戶居民的月用水量(單位:噸),得到統(tǒng)計(jì)表如下:
居民用水戶編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
用水量(噸) | 7 | 8 | 8 | 9 | 10 | 11 | <>13 | 14 | 15 | 20 |
(1)若用水量不超過(guò)噸時(shí),按元/噸計(jì)算水費(fèi);若用水量超過(guò)噸且不超過(guò)噸時(shí),超過(guò)噸部分按元/噸計(jì)算水費(fèi);若用水量超過(guò)噸時(shí),超過(guò)噸部分按元/噸計(jì)算水費(fèi).試計(jì)算:若某居民用水噸,則應(yīng)交水費(fèi)多少元?
(2)現(xiàn)要在這戶家庭中任意選取戶,求取到第二階梯水量的戶數(shù)的分布列與期望;
(3)用抽到的戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取戶,若抽到戶月用水量為第一階梯的可能性最大,求的值.
【答案】(1)75元(2)見(jiàn)解析,(3)6
【解析】
(1)由題意直接計(jì)算即可得解;
(2)由超幾何分布的概率公式求得、、、,即可列出分布列,由期望公式計(jì)算即可求得期望,即可得解;
(3)由二項(xiàng)分布的概率公式可得,,由題意列出不等式,即可得解.
(1)若某居民用水噸,則需交費(fèi)(元);
(2)設(shè)取到第二階梯電量的用戶數(shù)為,可知第二階梯電量的用戶有戶,則可取,
,,,.
故的分布列是
0 | 1 | 2 | 3 | |
所以;
(3)由題可知從全市中抽取戶,其中用電量為第一階梯的戶數(shù)滿足,
于是為,,
由,
化簡(jiǎn)得,解得.
因?yàn)?/span>,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著社會(huì)發(fā)展對(duì)環(huán)保的要求,越來(lái)越多的燃油汽車被電動(dòng)汽車取代,為了了解某品牌的電動(dòng)汽車的節(jié)能情況,對(duì)某一輛電動(dòng)汽車“行車數(shù)據(jù)”的兩次記錄如下表:
記錄時(shí)間 | 累計(jì)里程 (單位:公里) | 平均耗電量(單位:公里) | 剩余續(xù)航里程 (單位:公里) |
2020年1月1日 | 5000 | 0.125 | 380 |
2020年1月2日 | 5100 | 0.126 | 246 |
(注:累計(jì)里程指汽車從出廠開(kāi)始累計(jì)行駛的路程,累計(jì)耗電量指汽車從出廠開(kāi)始累計(jì)消耗的電量,)
下面對(duì)該車在兩次記錄時(shí)間段內(nèi)行駛100公里的耗電量估計(jì)正確的是( )
A.等于B.到之間C.等于D.大于
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)雙曲線的右焦點(diǎn)作直線,且直線與雙曲線的一條漸近線垂直,垂足為,直線與另一條漸近線交于點(diǎn),已知為坐標(biāo)原點(diǎn),若的內(nèi)切圓的半徑為,則雙曲線的離心率為( )
A.B.C.D.或2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)若對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,.已知分別是的中點(diǎn).將沿折起,使到的位置且二面角的大小是60°,連接,如圖:
(1)證明:平面平面
(2)求平面與平面所成二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,給定個(gè)整點(diǎn),其中.
(Ⅰ)當(dāng)時(shí),從上面的個(gè)整點(diǎn)中任取兩個(gè)不同的整點(diǎn),求的所有可能值;
(Ⅱ)從上面個(gè)整點(diǎn)中任取個(gè)不同的整點(diǎn),.
(i)證明:存在互不相同的四個(gè)整點(diǎn),滿足,;
(ii)證明:存在互不相同的四個(gè)整點(diǎn),滿足,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
Ⅰ若函數(shù)的最大值為3,求實(shí)數(shù)的值;
Ⅱ若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
Ⅲ若,是函數(shù)的兩個(gè)零點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,.
(1)若函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(2)當(dāng)時(shí),
(i)求函數(shù)在點(diǎn)處的切線方程;
(ii)若對(duì)任意,不等式恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com