問題:自然狀態(tài)下的魚類是一種可再生的資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力和捕撈強度對魚群總量的影響,用xn表示某魚群在第n年年初的總量,n∈N+,且x1>0,不考慮其他因素,設(shè)在第n年內(nèi)魚群的繁殖量及被捕撈量都與xn成正比,死亡量與x2n成正比,這些比例系數(shù)依次為正常數(shù)a,b,c.

    設(shè)a=2,c=1,為保證對任意x1∈(0,2),都有xn>0,n∈N+,則捕撈強度b的最大允許值是多少?證明你的結(jié)論.

導思:理順清楚數(shù)量間的關(guān)系,用數(shù)學歸納法證明.

探究:從第n年初到第n+1年初,魚群的繁殖量為axn,被捕撈量為bxn,死亡量為cx2n,因此,xn+1-xn=axn-bxn-cx2n,n∈N+.(*)

即xn+1=xn(a-b+1-cxn),n∈N+.(**)

若b的值使得xn>0,n∈N+.

由xn+1=xn(3-b-xn),n∈N+.知0<xn<3-b,n∈N+.特別地,有0<x1<3-b.即0<b<3-x1.

而x1∈(0,2),所以b∈(0,1].

    由此猜測b的最大允許值是1.

下證當x1∈(0,2),b=1時,都有xn∈(0,2),n∈N+.

①當n=1時,結(jié)論顯然成立.

②假設(shè)當n=k時結(jié)論成立,即xk∈(0,2).

則當n=k+1時,xk+1=xk(2-xk)>0.

    又因為xk+1=xk(2-xk)=-(xk-1)2+1≤1<2,

所以xk+1∈(0,2).故當n=k+1時結(jié)論也成立.

    由①②可知,對于任意n∈N+,都有xn∈(0,2).

    綜上所述,為保證對任意x1∈(0,2),都有xn>0,n∈N+,則捕撈強度b的最大允許值是1.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

自然狀態(tài)下的魚類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強度對魚群總量的影響.用xn表示某魚群在第n年年初的總量,n∈N*,且x1>0.不考慮其它因素,設(shè)在第n年內(nèi)魚群的繁殖量及捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a,b,c.
(Ⅰ)求xn+1與xn的關(guān)系式;
(Ⅱ)猜測:當且僅當x1,a,b,c滿足什么條件時,每年年初魚群的總量保持不變?(不要求證明)
(Ⅲ)設(shè)a=2,b=1,為保證對任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強度b的
最大允許值是多少?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

自然狀態(tài)下的魚類是一種可再生的資源,為了持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強度對魚群總量的影響.用xn表示某魚群在第n年初的總量,n∈N*,且x1>0.不考慮其他因素,設(shè)在第n年內(nèi)魚群的繁殖量及被捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正數(shù)a,b,c其中b稱為捕撈強度.
(1)求xn+1與xn的關(guān)系式;
(2)設(shè)a=2,c=1,為了保證對任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強度B的最大允許值是多少?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

自然狀態(tài)下的魚類是一種可再生的資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強度對魚群總量的影響.用xn表示某魚群在第n年年初的總量,n∈N*x1>0.不考慮其他因素,設(shè)在第n年內(nèi)魚群的繁殖量及被捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a、b、c.

(1)求x n+1xn的關(guān)系式.

(2)猜測:當且僅當x1a、b、c滿足什么條件時,每年年初魚群的總量保持不變?(不要求證明)

(3)設(shè)a=2,c=1,為保證對任意x1∈(0,2),都有xn>0,n∈N *,則捕撈強度b的最大允許值是多少?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年重慶市高三上學期第四次測試理科數(shù)學試卷(解析版) 題型:解答題

自然狀態(tài)下的魚類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強度對魚群總量的影響. 用xn表示某魚群在第n年年初的總量,n∈N*,且x1>0.不考慮其它因素,設(shè)在第n年內(nèi)魚群的繁殖量及捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a,b,c.

(Ⅰ)求xn+1與xn的關(guān)系式;

(Ⅱ)猜測:當且僅當x1,a,b,c滿足什么條件時,每年年初魚群的總量保持不變?(不要求證明)

(Ⅲ)設(shè)a=2,b>0,c=1為保證對任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強度b的最大允許值是多少?證明你的結(jié)論.

 

查看答案和解析>>

同步練習冊答案