【題目】設(shè)為的內(nèi)心,三邊長,點在邊上,且,若直線交直線于點,則線段的長為______.
【答案】
【解析】
設(shè)內(nèi)切圓⊙I與三角形三邊分別相切于點O,D,E.IO⊥AB,建立直角坐標系.分別設(shè)AO=x,BO=y,CD=z.利用切線的性質(zhì)定理可得x,y,z.利用余弦定理可得cosB=,sinB,tanB,可得直線BC的方程.設(shè)內(nèi)切圓的半徑為r.則=,解得r,得I坐標,可得直線PI的方程,聯(lián)立直線BC和PI解得Q.即可得|CQ|=6﹣|BQ|.
如圖所示,設(shè)內(nèi)切圓⊙I與三角形三邊分別相切于點O,D,E,IO⊥AB,建立直角坐標系.
分別設(shè)AO=x,BO=y,CD=z,則,解得x=3,y=4,z=2.O(0,0),B(4,0),P(﹣1,0),
在中,cosB==,sinB=,可得tanB=.
直線BC的方程為:y=(x﹣4).
設(shè)內(nèi)切圓的半徑為r.則=,解得r=.可得I.
直線PI的方程為:y=x+,即y=x+.
聯(lián)立,解得Q,
∴|CQ|=6﹣|BQ|=6﹣=6﹣=.
故答案為:.
科目:高中數(shù)學 來源: 題型:
【題目】某地因受天氣,春季禁漁等因素影響,政府規(guī)定每年的7月1日以后的100天為當年的捕魚期.某漁業(yè)捕撈隊對噸位為的20艘捕魚船一天的捕魚量進行了統(tǒng)計,如下表所示:
捕魚量(單位:噸) | |||||
頻數(shù) | 2 | 7 | 7 | 3 | 1 |
根據(jù)氣象局統(tǒng)計近20年此地每年100天的捕魚期內(nèi)的晴好天氣情況如下表(捕魚期內(nèi)的每個晴好天氣漁船方可捕魚,非晴好天氣不捕魚):
晴好天氣(單位:天) | |||||
頻數(shù) | 2 | 7 | 6 | 3 | 2 |
(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)
(Ⅰ)估計漁業(yè)捕撈隊噸位為的漁船一天的捕魚量的平均數(shù);
(Ⅱ)若以(Ⅰ)中確定的平均數(shù)作為上述噸位的捕魚船在晴好天氣捕魚時一天的捕魚量.
①估計一艘上述噸位的捕魚船一年在捕魚期內(nèi)的捕魚總量;
②已知當?shù)佤~價為2萬元/噸,此種捕魚船在捕魚期內(nèi)捕魚時,每天成本為10萬元/艘;若不捕魚,每天成本為2萬元/艘,請依據(jù)往年天氣統(tǒng)計數(shù)據(jù),估計一艘此種捕魚船年利潤不少于1600萬元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某年數(shù)學競賽邀請了一位來自星球的選手參加填空題比賽,共10道題目,這位選手做題有一個古怪的習慣:先從最后一題(第10題)開始往前看,凡是遇到會的題目就作答,遇到不會的題目先跳過(允許跳過所有的題目),一直看到第1題,然后從第1題開始往后看,凡是遇到先前未答的題目就隨便寫個答案,遇到先前已答得題目則跳過(例如,他可以按照9、8、7、4、3、2、1、5、6、10的次序答題),這樣所有題目均有作答,則這位選手可能的答題次序有______種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求函數(shù)的極小值;
(Ⅱ)當時,討論的單調(diào)性;
(Ⅲ)若函數(shù)在區(qū)間上有且只有一個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:
品牌 | 甲 | 乙 | |||
首次出現(xiàn)故 障時間x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轎車數(shù)量(輛) | 2 | 3 | 45 | 5 | 45 |
每輛利潤 (萬元) | 1 | 2 | 3 | 1.8 | 2.9 |
將頻率視為概率,解答下列問題:
(1)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率.
(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列.
(3)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟效益的角度考慮,你認為應生產(chǎn)哪種品牌的轎車?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓為其左右焦點,為其上下頂點,四邊形的面積為.點為橢圓上任意一點,以為圓心的圓(記為圓)總經(jīng)過坐標原點.
(1)求橢圓的長軸的最小值,并確定此時橢圓的方程;
(2)對于(1)中確定的橢圓,若給定圓,則圓和圓的公共弦的長是否為定值?如果是,求的值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求滿足下列條件的雙曲線的標準方程:
(1)一條漸近線方程為,且與橢圓有相同的焦點;
(2)經(jīng)過點,且與雙曲線有共同的漸近線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com