【題目】已知數(shù)列滿足:,,設(shè)數(shù)列的前項(xiàng)和為.證明:

(Ⅰ)

(Ⅱ);

(Ⅲ).

【答案】(Ⅰ)見(jiàn)解析; (Ⅱ)見(jiàn)解析; (Ⅲ)見(jiàn)解析.

【解析】

(Ⅰ)由數(shù)學(xué)歸納法證得不等式;

(Ⅱ)先利用證明,得數(shù)列是遞減數(shù)列,則,進(jìn)而分析法證明原不等式,再構(gòu)造函數(shù),利用導(dǎo)數(shù)證得不等式成立;

(Ⅲ)由(Ⅱ)所證不等式取倒移項(xiàng)得數(shù)列的遞推不等式關(guān)系,利用累加法得,利用分組求和即可證得數(shù)列的前項(xiàng)和;構(gòu)造,利用導(dǎo)數(shù)分析單調(diào)性證得,即,同前面的證明過(guò)程,可證,即原不等式得證.

(Ⅰ)當(dāng)時(shí),,所以命題成立;

假設(shè)時(shí)命題成立,即.

當(dāng)時(shí),有,所以.

故對(duì)于都有

(Ⅱ)令,即

所以上單調(diào)遞減,則

所以,即,所以數(shù)列是遞減數(shù)列

,因此.

要證明,即證

構(gòu)造函數(shù).

,所以單調(diào)遞減.

,因此.

(Ⅲ)由(Ⅱ)可知成立,

則由遞推關(guān)系累加法可得,故數(shù)列的前項(xiàng)和

構(gòu)造函數(shù)

,所以單調(diào)遞增.

,得.

所以有,同前推理有,則同前由累加法可得,故同前分組求和的方式得.

因此得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20168月巴西里約熱內(nèi)盧舉辦的第31屆奧運(yùn)會(huì)上,乒乓球比賽團(tuán)體決賽實(shí)行五場(chǎng)三勝制,且任何一方獲勝三場(chǎng)比賽即結(jié)束.甲、乙兩個(gè)代表隊(duì)最終進(jìn)入決賽,根據(jù)雙方排定的出場(chǎng)順序及以往戰(zhàn)績(jī)統(tǒng)計(jì)分析,甲隊(duì)依次派出的五位選手分別戰(zhàn)勝對(duì)手的概率如下表:

出場(chǎng)順序

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

獲勝概率

若甲隊(duì)橫掃對(duì)手獲勝(即30獲勝)的概率是,比賽至少打滿4場(chǎng)的概率為.

1)求,的值;

2)求甲隊(duì)獲勝場(chǎng)數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在R上的函數(shù),當(dāng)時(shí),取極大值,且函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

1)求的表達(dá)式;

2)試在函數(shù)的圖象上求兩點(diǎn),使以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切點(diǎn)的橫坐標(biāo)都在上;

3)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),則的零點(diǎn)個(gè)數(shù)為( )

A. 6B. 7C. 8D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,,,5名同學(xué)從左至右排成一排,則相鄰且之間恰好有1名同學(xué)的排法有________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于不重合的兩個(gè)平面αβ,給定下列條件:

①存在平面γ,使得α,β都平行于γ

②存在兩條不同的直線l,m,使得lβmβ,使得lαmα

α內(nèi)有不共線的三點(diǎn)到β的距離相等;

④存在異面直線l,m,使得lαlβ,mα,mβ.

其中,可以判定αβ平行的條件有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒(méi)有紅球,則不獲獎(jiǎng).

(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;

(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù),.

(1)求的單調(diào)區(qū)間

(2)討論零點(diǎn)的個(gè)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)討論函數(shù)的導(dǎo)函數(shù)的單調(diào)性;

(2)若函數(shù)處取得極大值,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案