【題目】如圖是某工廠從工程設(shè)計B到試生產(chǎn)H的工序流程圖,方框上方的數(shù)字為這項工序所用的天數(shù),則從工程設(shè)計到結(jié)束試生產(chǎn)需要的最短時間為( )

A.22天
B.23天
C.28天
D.以上都不對

【答案】C
【解析】由已知中的工序流程圖可得由A到H需要8+7+5+2=22天,由B經(jīng)C到H需要10+4+7+5+2=28天;由B經(jīng)D到H需要10+6+5+2=23天;由G到H需要4+5+2=11天;而從工程設(shè)計到結(jié)束試生產(chǎn)需要的最短時間為這幾個時間中的最大值,故從工程設(shè)計到結(jié)束試生產(chǎn)需要的最短時間為28天,故選C
本題主要考查了工序流程圖(即統(tǒng)籌圖),解決問題的關(guān)鍵是由已知中的工序流程圖,我們可以計算出每條工程設(shè)計從開始到結(jié)束的時間,進而根據(jù)從工程設(shè)計到結(jié)束試生產(chǎn)需要的最短時間為這幾個時間中的最大值,得到答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

函數(shù)的圖象與的圖象無公共點,求實數(shù)的取值范圍;

是否存在實數(shù),使得對任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請求出整數(shù)的最大值;若不存在,請說理由.

(參考數(shù)據(jù):,,).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關(guān)?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為菱形, 底面, , 上的一點,PE=2EC, 的中點.

(1)證明: 平面

(2)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)在R上可導且滿足不等式xf′(x)+f(x)>0恒成立,且常數(shù)a,b滿足a>b,則下列不等式一定成立的是(
A.af(a)>bf(b)
B.af(b)>bf(a)
C.af(a)<bf(b)
D.af(b)<bf(a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)計一個尺規(guī)作圖的算法來確定線段AB的一個五等分點,并畫出流程圖。
(點撥:確定線段AB的五等分點,是指在線段AB上確定一點M,使得

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD

EPD的中點,PA=2AB=2.

(1)若FPC的中點,求證PC⊥平面AEF;

(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù) ,且函數(shù)處的切線平行于直線

(Ⅰ)實數(shù)的值;(Ⅱ)若在)上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,M,N,K分別是正方體ABCD﹣A1B1C1D1的棱AB,CD,C1D1的中點.

(1)求證:AN∥平面A1MK;
(2)求證:平面A1B1C⊥平面A1MK.

查看答案和解析>>

同步練習冊答案