【題目】已知F為拋物線E:x2=2py(p>0)的焦點,直線l:y=kx+ 交拋物線E于A,B兩點.
(Ⅰ)當k=1,|AB|=8時,求拋物線E的方程;
(Ⅱ)過點A,B作拋物線E的切線l1 , l2 , 且l1 , l2交點為P,若直線PF與直線l斜率之和為﹣ ,求直線l的斜率.

【答案】解:(Ⅰ)聯(lián)立 ,消去x得 , 題設得 ,
∴p=2,
∴拋物線E的方程為x2=4y.
(II)設
聯(lián)立 ,消去y得x2﹣2pkx﹣p2=0,
,
,
∴直線l1 , l2的方程分別為 ,
聯(lián)立 得點P的坐標為
,

∴直線l的斜率為k=﹣2或
【解析】(Ⅰ)根據(jù)弦長公式即可求出p的值,問題得以解決,(Ⅱ)聯(lián)立方程組,根據(jù)韋達定理,即可求出過點A,B作拋物線E的切線l1 , l2方程,再求出交點坐標,根據(jù)斜率的關(guān)系即可求出k的值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,3,則輸出v的值為(
A.20
B.61
C.183
D.548

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , 若Sm1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*
(Ⅰ)求m的值;
(Ⅱ)若數(shù)列{bn}滿足 =log2bn(n∈N+),求數(shù)列{(an+6)bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(
A.8
B.13
C.21
D.34

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,若不等式f(x3﹣x2+a)+f(﹣x3+x2﹣a)≥2f(1)對x∈[0,1]恒成立,則實數(shù)a的取值范圍為( )
A.[ ,1]
B.[﹣ ,1]
C.[1,3]
D.(﹣∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請用相關(guān)系數(shù)加以說明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預測2017年我國生活垃圾無害化處理量.
參考數(shù)據(jù): =9.32, =40.17, =0.55, ≈2.646.
參考公式:相關(guān)系數(shù)r= 回歸方程 = + t 中斜率和截距的最小二乘估計公式分別為: = , =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(Ⅰ)若曲線y=f(x)與直線y=kx相切于點P,求點P的坐標;
(Ⅱ)當a≤e時,證明:當x∈(0,+∞),f(x)≥a(x﹣lnx).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,4sinA+3cosB=5,4cosA+3sinB=2 ,則角C等于(
A.150°或30°
B.120°或60°
C.30°
D.60°

查看答案和解析>>

同步練習冊答案